江苏省常州市星辰实验学校2024-2025学年数学九上开学质量检测模拟试题【含答案】
展开这是一份江苏省常州市星辰实验学校2024-2025学年数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形,菱形,正方形都具有的性质是( )
A.对角线相等B.对角线互相垂直
C.对角线互相平分D.对角线平分一组对角
2、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )
A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)
3、(4分)若不等式组的解集为,则的值等于( )
A.B.C.2D.4
4、(4分)已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )
A.平均数B.标准差C.中位数D.众数
5、(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A.B.C.5D.4
6、(4分)药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度(微克/毫升)与服药后的时间(时)之间的函数关系如图所示,则当,的取值范围是( )
A.B.C.D.
7、(4分)已知点,,,在直线上,且,下列选项正确的是
A.B.C.D.无法确定
8、(4分)如图,经过多边形一个角的两边剪掉这个角,则新多边形的内角和( )
A.比原多边形多180°B.比原多边形多360°
C.与原多边形相等D.比原多边形少180°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
10、(4分)已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是____.
11、(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.
12、(4分) 如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.
13、(4分)如图,在四边形中,,,,,分别是,,,的中点,要使四边形是菱形,四边形还应满足的一个条件是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图:在中,平分,且,于点,于点.
(1)求证:;
(2)若,,求的长.
15、(8分)某校组织275名师生郊游,计划租用甲、乙两种客车共7辆,已知甲客车载客量是30人,乙客车载客量是45人,其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需3000元.
(1)租用一辆甲种客车、一辆乙种客车的租金各多少元?
(2)设租用甲种客车辆,总租车费为元,求与的函数关系式;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
16、(8分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.
17、(10分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的型车2017年7月份销售额为万元,今年经过改造升级后,型车每辆的销售价比去年增加元,若今年7月份与去年7月份卖出的型车数量相同,则今年7月份型车销售总额将比去年7月份销售总额增加.求今年7月份顺风车行型车每辆的销售价格.
18、(10分)如图,已知是平行四边形中边的中点,是对角线,连结并延长交的延长线于点,连结.求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是____(写出一个即可).
20、(4分)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为___cm.
21、(4分)如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.
22、(4分)甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)
23、(4分)已知,则x等于_____.
二、解答题(本大题共3个小题,共30分)
24、(8分) “立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评分标准如下:注:成绩栏里的每个范围,含最低值,不含最高值.
某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:
1.96 2.38 2.56 2.04 2.34 2.17 2.60 2.26 1.87 2.32
请完成下列问题:
(1)求这10名男生立定跳远成绩的极差和平均数;
(2)求这10名男生立定跳远得分的中位数和众数;
(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.
25、(10分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示
该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量]
(1)该商场计划购进国外品牌、国内品牌两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润
26、(12分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:
酒店豪华间有多少间?旺季每间价格为多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用矩形、菱形和正方形的性质对各选项进行判断.
【详解】
解:矩形、菱形、正方形都具有的性质是对角线互相平分.
故选:C.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.
2、B
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
【详解】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4);
令y=x+4中y=0,则x+4=0,解得:x=﹣8,
∴点A的坐标为(﹣8,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(﹣4,1),点D(0,1).
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,﹣1).
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(﹣4,1),D′(0,﹣1),
∴,解得:,
∴直线CD′的解析式为y=﹣x﹣1.
令y=0,则0=﹣x﹣1,解得:x=﹣1,
∴点P的坐标为(﹣1,0).
故选:B.
本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.
3、B
【解析】
首先解不等式组,根据解集求出的值,然后代入即可得解.
【详解】
解不等式组,得
∵解集为,
∴
∴
∴
故选:B.
此题主要考查根据不等式组的解集求参数的值,熟练掌握,即可解题.
4、B
【解析】
试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:
设样本A中的数据为xi,则样本B中的数据为yi=xi+2,
则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.
故选B.
考点:统计量的选择.
5、A
【解析】
根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.
【详解】
解:∵四边形ABCD是菱形,设AB,CD交于O点,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=×AC×BD=AB×DH,
∴×8×6=5×DH,
∴DH=,
故选A.
本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.
6、C
【解析】
根据图像分别求出和时的函数表达式,再求出当x=1,x=3,x=6时的y值,从而确定y的范围.
【详解】
解:设当时,设,
,
解得:,
;
当时,设,
,
解得:,
;
当时,,当时,有最大值8,当时,的值是,
∴当时,的取值范围是.
故选:.
本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
7、B
【解析】
先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可作出判断.
【详解】
解:直线中,
随的增大而增大,
,
.
故选:.
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.
8、A
【解析】
根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.
【详解】
因为n边形的内角和是:(n-2)180°
由图可知,新图形多了一边,
所以,新多边形的内角和比原多边形多180°.
本题考查了多边形内角与外角,掌握多边形的内角和公式是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8或1
【解析】
解:如图所示:①当AE=1,DE=2时,
∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
∴平行四边形ABCD的周长=2(AB+AD)=8;
②当AE=2,DE=1时,同理得:AB=AE=2,
∴平行四边形ABCD的周长=2(AB+AD)=1;
故答案为8或1.
10、k<-5
【解析】
根据当k<0时, y随x的增大而减小解答即可.
【详解】
由题意得
k+5<0,
∴k<-5.
故答案为:k<-5.
本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时, y=kx的图象经过二、四象限,y随x的增大而减小.
11、0.4m
【解析】
先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.
【详解】
∵AB⊥BD,CD⊥BD,
∴∠ABO=∠CDO.
∵∠AOB=∠COD,
∴△OAB∽△OCD,
∴AO:CO=AB:CD,
∴4:1=1.6:CD,
∴CD=0.4.
故答案为:0.4.
本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.
12、
【解析】
根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.
【详解】
解:∵由勾股定理得:AC2+BC2=AB2,
∴S2+S1=S3,
∵S1=5,S2=6,
∴S3=11,
∴AB=,
故答案为:.
本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.
13、
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半可得且,同理可得且,且,然后证明四边形是平行四边形,再根据邻边相等的平行四边形是菱形解答.
【详解】
解:还应满足.
理由如下:,分别是,的中点,
且,
同理可得:且,且,
且,
四边形是平行四边形,
,
,
即,
是菱形.
故答案是:.
本题考查了中点四边形,其中涉及到了菱形的判定,平行四边形的判定,三角形的中位线定理,根据三角形的中位线平行于第三边并且等于第三边的一半得到四边形的对边平行且相等从而判定出平行四边形是解题的关键,也是本题的突破口.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)
【解析】
(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;
(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.
【详解】
(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△BDE和Rt△CDF中, ,
∴Rt△BDE≌Rt△CDF,
∴∠B=∠C,
∴AB=AC;
(2)∵AD平分∠BAC,BD=CD,
∴AD⊥BC,
∵∠DAC=30°,
∴AC=2DC=8,
∴AD=.
本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
15、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)w=-100x+2800;当租用甲种客车2辆时,总租车费最少,最少费用为1元.
【解析】
(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,列出方程即可解决问题;
(2)由题意w=300x+400(7-x)=-100x+2800,列出不等式求出x的取值范围,利用一次函数的性质即可解决问题.
【详解】
(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,
由题意5x+2(x+100)=2300,
解得x=300,
答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.
(2)由题意w=300x+400(7-x)=-100x+2800,
又30x+45(7-x)≥275,
解得x≤,
∴x的最大值为2,
∵-100<0,
∴x=2时,w的值最小,最小值为1.
答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.
本题考查一元一次方程的应用、一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会构建一次函数解决最值问题.
16、6
【解析】
由勾股定理可求AB的长,由折叠的性质可得AC=AE=6cm,∠DEB=90°,由勾股定理可求DE的长,由三角形的面积公式可求解.
【详解】
解:∵AC=6cm,BC=8cm,
∴,
∵将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,
∴AC=AE=6cm,∠DEB=90°
∴BE=10-6=4cm
设CD=DE=x,
则在Rt△DEB中,
,
解得:,
即DE=3.
∴△BDE的面积为:.
本题考查了翻折变换,勾股定理,三角形面积公式,熟练掌握折叠的性质是本题的关键.
17、2000
【解析】
设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.
【详解】
解:设去年A型车每辆x元,那么今年每辆(x+400)元,
根据题意得
解得x=1600,
经检验,x=1600是方程的解.
答:今年A型车每辆2000元.
本题考查了分式方程的应用,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验.
18、见解析
【解析】
先证明△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形.
【详解】
证明:∵四边形ABCD为平行四边形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E为BC的中点,
∴BE=CE,
在△ABE和△FCE中,
,
∴△ABE≌△FCE(ASA),
∴AB=CF,
又∵四边形ABCD为平行四边形,
∴AB∥CF,
∴四边形ABFC为平行四边形.
此题考查了平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握基本判定与性质是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).
【解析】
根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.
【详解】
解:根据题意可得出:四边形CBFE是平行四边形,
当CB=BF时,平行四边形CBFE是菱形,
当CB=BF;BE⊥CF;∠EBF=60°;BD=BF时,都可以得出四边形CBFE为菱形.
故答案为:如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.
此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.
20、6
【解析】
∵l垂直平分BC,∴DB=DC.
∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm
21、3:1
【解析】
根据同高的两个三角形面积之比等于底边之比得,,再由点O是▱ABCD的对角线交点,根据平行四边形的性质可得S△AOB=S△BOC=S▱ABCD,从而得出S1与S1之间的关系.
【详解】
解:∵,,
∴S1=S△AOB,S1=S△BOC.
∵点O是▱ABCD的对角线交点,
∴S△AOB=S△BOC=S▱ABCD,
∴S1:S1=:=3:1,
故答案为:3:1.
本题考查了三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出,是解答本题的关键.
22、不公平.
【解析】
试题分析:先根据题意画出树状图,然后根据概率公式求解即可.
画出树状图如下:
共有9种情况,积为奇数有4种情况
所以,P(积为奇数)=
即甲获胜的概率是
所以这个游戏不公平.
考点:游戏公平性的判断
点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.
23、2
【解析】
先化简方程,再求方程的解即可得出答案.
【详解】
解:根据题意可得x>0
∵x+2+=10
++3=10
=2
x=2.
故答案为:2.
本题考查无理方程,化简二次根式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)0.73,2.25;(2)2,10;(3)1.
【解析】
(1)根据极差、平均数的定义求解;
(2)对照表格得到10名男生立定跳远得分,然后根据中位线、众数的概念解答;
(3)用样本根据总体.
【详解】
解:(1)10名男生“立定跳远”成绩的极差是:2.60-1.87=0.73(米)
10名男生“立定跳远”成绩的平均数是:
(1.26+2.38+2.56+2.04+2.34+2.17+2.60+2.26+1.87+2.32)=2.25(米);
(2)抽查的10名男生的立定跳远得分依次是:
7,10,10,8,10,8,10,2,6,2.
∴10名男生立定跳远得分的中位数是2分,众数是10分;
(3)∵抽查的10名男生中得分2分(含2分)以上有6人,
∴有480×=1;
∴估计该校480名男生中得到优秀的人数是1人.
本题考查了极差,平均数,中位线,众数的概念,极差是一组数据中最大的数与最小的数的差.众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.
25、(1)商场计划购进国外品牌手机20部,国内品牌手机30部;(2)当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.
【解析】
(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;
(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.
【详解】
(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:
,
解得,
答:商场计划购进国外品牌手机20部,国内品牌手机30部;
(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:
0.44(20-a)+0.2(30+3a)≤15.6,
解得:a≤5,
设全部销售后获得的毛利润为w万元,由题意,得:
w=0.06(20-a)+0.05(30+3a)=0.09a+2.7,
∵k=0.09>0,
∴w随a的增大而增大,
∴当a=5时,w最大=3.15,
答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.
26、该酒店豪华间有50间,旺季每间价格为800元.
【解析】
根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;
【详解】
设淡季每间的价格为x元,酒店豪华间有y间,
,
解得, ,
∴x+13x=600+13×600=800,
答:该酒店豪华间有50间,旺季每间价格为800元;
此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.
题号
一
二
三
四
五
总分
得分
成绩(米)
…
1.80~1.86
1.86~1.94
1.94~2.02
2.02~2.18
2.18~2.34
2.34~
得分(分)
…
5
6
7
8
9
10
国外品牌
国内品牌
进价(万元/部)
0.44
0.2
售价(万元/部)
0.5
0.25
淡季
旺季
未入住房间数
10
0
日总收入(元)
24000
40000
相关试卷
这是一份江苏省常州市武进区礼嘉中学2024-2025学年九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,四象限,则的值是,解答题等内容,欢迎下载使用。
这是一份江苏省常州市金坛区2024-2025学年数学九上开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省常州市武进星辰实验学校数学九年级第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。