济宁市高中学段学校2024-2025学年数学九上开学监测模拟试题【含答案】
展开
这是一份济宁市高中学段学校2024-2025学年数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数的图像上有点,B(2,),则下面关系正确的是( )
A.>>B.>>C.>>D.>>
2、(4分)将多项式加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是( )
A.B.C.D.
3、(4分)下列约分计算结果正确的是( )
A.B.C.D.
4、(4分)总书记提出了未来五年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为( )
A.1.17×107B.11.7×106C.0.117×107D.1.17×108
5、(4分)在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )
A.18,18,1B.18,17.5,3C.18,18,3D.18,17.5,1
6、(4分)已知、、是的三边,且满足,则的形状是( )
A.等腰三角形B.等边三角形
C.直角三角形D.不能确定
7、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为( )
A.4B.16C.2D.4
8、(4分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图, ,矩形ABCD的顶点A、B分别在OM、ON上,当B在边ON上运动时,A 随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,则运动过程中,点C到点O的最大距离为___________.
10、(4分)如图,点在双曲线上,为轴上的一点,过点作轴于点,连接、,若的面积是3,则__.
11、(4分)如图,菱形ABCD的周长是40 cm,对角线AC为10 cm,则菱形相邻两内角的度数分别为_______.
12、(4分)化简﹣的结果是_____.
13、(4分)函数的自变量的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校计划组织全校1500名师生外出参加集体活动.经过研究,决定租用当地租车公司一共60辆、两种型号客车作为交通工具.
下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
注:载客量指的是每辆客车最多可载该校师生的人数.
学校租用型号客车辆,租车总费用为元.
(1)求与的函数解析式,请直接写出的取值范围;
(2)若要使租车总费用不超过22000元,一共有几种租车方案?并结合函数性质说明哪种租车方案最省钱?
15、(8分)如图,已知△ABC三个顶点的坐标分别为A(-2,-1),B(-3,-3),C(-1,-3).
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)若△A2B2C2是由△ABC平移而得,且点A2的坐标为(-4,4),请写出B2和C2的坐标.
16、(8分)在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数和的图象,分别与x轴交于点A、B,两直线交于点C. 已知点,,观察图象并回答下列问题:
(1)关于x的方程的解是______;关于x的不等式的解集是______;
(2)直接写出关于x的不等式组的解集;
(3)若点,求关于x的不等式的解集和△ABC的面积.
17、(10分)下图是某大桥的斜拉索部分效果图,为了测得斜拉索顶端距离海平面的高度,先测出斜拉索底端到桥塔的距离(的长)约为米,又在点测得点的仰角为 ,测得点的俯角为,求斜拉索顶端点到海平面点的距离(的长). ()
18、(10分)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.
求证:(1)△ABE≌△CDF;
(2)四边形EBFD是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线y=kx+b与直线y=-3x+4平行,且经过点(1,2),则k=______,b=______.
20、(4分)实数a在数轴上的位置如图示,化简:_____.
21、(4分)若是方程的两个实数根,则_______.
22、(4分)计算−的结果为______
23、(4分)过边形的一个顶点共有2条对角线,则该边形的内角和是__度.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.
25、(10分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD.BC上,且DE=BP=1.连接BE,EC,AP,DP,PD与CE交于点F,AP与BE交于点H.
(1)判断△BEC的形状,并说明理由;
(2)判断四边形EFPH是什么特殊四边形,并证明你的判断;
(3)求四边形EFPH的面积.
26、(12分)(1) ;
(2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数时,y随x的增大而减小,可得,的大小关系,再根据不等式的性质判断,与b的大小关系.
【详解】
∵一次函数中,
∴y随x的增大而减小
∵
∴
∵
∴
∴,
即,
∴
故选C.
本题考查一次函数的增减性,熟练掌握时,一次函数y随x的增大而减小是解题的关键.
2、B
【解析】
将分别与各个选项结合看看是否可以分解因式,即可得出答案.
【详解】
A.,此选项正确,不符合题意;
B.,此选项错误,符合题意;
C. ,此选项正确,不符合题意;
D. ,此选项正确,不符合题意.
故选B.
本题考查了因式分解,熟练掌握公式是解题的关键.
3、C
【解析】
根据约分的定义逐项分析即可,根据分式的基本性质把分子、分母中除1以外的公因式约去,叫做分式的约分.
【详解】
A. 的分子与分母没有公因式,不能约分,故不正确;
B. 的分子与分母没有公因式,不能约分,故不正确;
C. ,故正确;
D. ,故不正确;
故选C.
本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键.
4、A
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
详解:11700000=1.17×1.
故选A.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、A
【解析】
根据众数、中位数的定义和方差公式分别进行解答即可.
【详解】
这组数据18出现的次数最多,出现了3次,则这组数据的众数是18;
把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18;
这组数据的平均数是:(17×2+18×3+20)÷6=18,则方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.
故选A.
本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2].
6、B
【解析】
根据完全平方公式把等式进行变形即可求解.
【详解】
∵
∴
则=0,
故a=b=c,的形状等边三角形,故选B.
此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形.
7、A
【解析】
∵∠C=90°,CD⊥AB,
∴∠ADC=∠CDB=90°, ∠CAD+∠CBD=90°,
∴∠CAD+∠ACD=90°,
∴∠ACD=∠CBD,
∴△ADC∽△CDB,
∴,
∵AD=8,DB=2
∴CD=1.
故选A
8、D
【解析】
根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,DH=,CD=6x,根据三角形面积公式即可判断④.
【详解】
①∵四边形ABCD为正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;
③∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),故③正确;
④∵AE:AB=2:3,
∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
过H点作HM垂直于CD于M点,如图所示:
设HM=x,则DM=5x,DH==,CD=6x,
则S△DHC=×CD×HM=3x2,S△EDH=×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确,
所以正确的有4个,
故选D.
本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
取AB的中点E,连接OE、CE、OC,根据三角形的任意两边之和大于第三边可知当O、C、E三点共线时,点C到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
【详解】
如图,取AB的中点E,连接OE、CE、OC,∵OC⩽OE+CE,
∴当O、C. E三点共线时,点C到点O的距离最大,
此时,∵AB=2,BC=1,
∴OE=AE=AB=1,
CE=,
∴OC的最大值为:
此题考查直角三角形斜边上的中线,勾股定理,解题关键在于做辅助线
10、-6
【解析】
连结OA,如图,利用三角形面积公式得到S△OAC=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结,如图,
轴,
,
,
而,
,
,
.
故答案为:.
本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
11、60°,120°
【解析】
首先证明△ABD是等边三角形,则∠D=60°,然后利用菱形的性质求解.
【详解】
∵菱形ABCD的边长AD=CD==10cm,
又∵AC=10cm,
∴AD=CD=AC,
∴△ACD=60°,
∴∠D =60°,∠DAB=120°,
故答案为60°,120°
本题考查了菱形的性质,正确证明△ABC是等边三角形是关键.
12、﹣
【解析】
原式通分并利用同分母分式的减法法则计算即可得到结果
【详解】
原式=
=
=
故答案为:
此题考查分式的加减法,掌握运算法则是解题关键
13、x>
【解析】
根据分式、二次根式有意义的条件,确定x的范围即可.
【详解】
依题意有2x-3>2,
解得x>.
故该函数的自变量的取值范围是x>.
故答案为:x>.
本题考查的知识点为:分式有意义,分母不为2.二次根式有意义,被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+23中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-2.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
三、解答题(本大题共5个小题,共48分)
14、 (1)与的函数解析式为;(2)一共有11种租车方案,当租用型车辆30辆,型车辆30辆时,租车费用最省钱.
【解析】
(1)根据题意可以得到y与x的函数关系式,然后根据总人数可以求出x的取值范围,本题得以解决;
(2)根据题意可以得到关于x的不等式,然后根据一次函数的性质即可解答本题.
【详解】
(1)由题意可得,
,
,
解得,,
即与的函数解析式为;
(2)由题意可得,
,
解得,,
,
为整数,
、31、32、33、、40,
共有11种租车方案,
,
随的增大而增大,
当时,取得最小值,此时,,
答:一共有11种租车方案,当租用型车辆30辆,型车辆30辆时,租车费用最省钱.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
15、(1)图见详解,点A1、B1、C1的坐标分别为(2,-1),(3,-3),(1,-3);(2)点B2的坐标为(-5,2),C2的坐标为(-3,2).
【解析】
(1)根据关于y轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可;
(2)利用点A和点A2的坐标特征确定平移的方向与距离,从而写出B2和C2的坐标.
【详解】
解:(1)如图,△A1B1C1为所作,
点A1、B1、C1的坐标分别为(2,-1),(3,-3),(1,-3);
(2)∵点A(-2,-1)平移后的对应点A2的坐标为(-4,4),
∴将△ABC先向上平移5个单位长度,再向左平移2个单位长度得到△A2B2C2,
∴点B2的坐标为(-5,2),C2的坐标为(-3,2).
本题考查了平移的性质、作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.
16、 (1)x=-1,;(2)-1<x<2;(3),.
【解析】
(1)利用直线与x轴交点即为y=0时,对应x的值,进而得出答案;
(2)利用两直线与x轴交点坐标,结合图象得出答案;
(3)两条直线相交于点C,根据点C的左右两边图像的位置可确定答案;利用三角形面积公式求得即可.
【详解】
解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(-1,0)、B(2,0),
∴关于x的方程k1x+b1=0的解是x=-1,
关于x的不等式kx+b<0的解集,为x>2,
故答案为x=-1,x>2;
(2)根据图象可以得到关于x的不等式组的解集-1<x<2;
(3)∵C(1, 3),
根据图象可以得到关于x的不等式k1x+b1>kx+b的解集:
∵AB=3,
∴S△ABC=AB•yC=×3×3=.
此题主要考查了一元一次方程的解、一次函数与不等式,一次函数与不等式组,三角形面积,正确利用数形结合解题是解题关键.
17、151米
【解析】
先解直角三角形ADC得出AD的长,然后在直角三角形BDC中求得BD的长,两者相加即可求得AB的长.
【详解】
在中, ,
.
在中,
米.
本题考查了解直角三角形的应用-仰角俯角问题、坡度坡角问题,难度适中,通过直角三角形,利用三角函数求解是解题的关键.
18、(1)见解析;(2)见解析.
【解析】
(1)根据条件,由ASA即可得出△ABE≌△CDF;
(2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.
【详解】
证明:(1)∵四边形ABD是平行四边形,
∴AB=CD,∠BAD=∠DCB,
∴∠BAE=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA);
(2)∵△ABE≌△CDF,
∴AE=CF(全等三角形对应边相等),
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴AD+AE=BC+CF,
即DE=BF,
∴四边形EBFD是平行四边形(一组对边平行且相等的四边形是平行四边形).
本题主要考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-3, 1
【解析】
根据两直线平行,得到k=-3,然后把(1,2)代入y=-3x+b中,可计算出b的值.
【详解】
∵直线y=kx+b与直线y=-3x+4平行,
∴k=-3,
∵直线y=-3x+b过点(1,2),
∴1×(-3)+b=2,
∴b=1.
故答案为:-3;1.
本题主要考查两平行直线的函数解析式的比例系数关系,掌握若两条直线是平行的关系,那么它们的函数解析式的自变量系数相同,是解题的关键.
20、1.
【解析】
由数轴可知,1
相关试卷
这是一份福建厦门华侨中学2024-2025学年九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江嵊州蒋镇学校数学九上开学监测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。