终身会员
搜索
    上传资料 赚现金
    宁阳县第一中学2024-2025学年高二上学期10月阶段性考试(一)数学试卷(含答案)
    立即下载
    加入资料篮
    宁阳县第一中学2024-2025学年高二上学期10月阶段性考试(一)数学试卷(含答案)01
    宁阳县第一中学2024-2025学年高二上学期10月阶段性考试(一)数学试卷(含答案)02
    宁阳县第一中学2024-2025学年高二上学期10月阶段性考试(一)数学试卷(含答案)03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    宁阳县第一中学2024-2025学年高二上学期10月阶段性考试(一)数学试卷(含答案)

    展开
    这是一份宁阳县第一中学2024-2025学年高二上学期10月阶段性考试(一)数学试卷(含答案),共17页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题
    1.已知点关于z轴的对称点为B,则等于( )
    A.B.C.2D.
    2.以下各组向量中的三个向量,不能构成空间基底的是( )
    A.,,
    B.,,
    C.,,
    D.,,
    3.在空间四边形中,E,F分别为,的中点,则( )
    A.B.C.D.
    4.已知点,,,若A,B,C三点共线,则a,b的值分别是( )
    A.,3B.,2C.1,3D.,2
    5.直线的一个方向向量为( )
    A.B.C.D.
    6.在所有棱长均为2的平行六面体中,,则的长为( )
    A.B.C.D.6
    7.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为( )
    A.B.C.D.
    8.在棱长为a的正方体中,M,N分别为,的中点,点P在正方体表面上运动,且满足,点P轨迹的长度是( ).
    A.B.C.D.4a
    二、多项选择题
    9.已知直线,,,则下列结论正确的是( )
    A.直线l恒过定点
    B.当时,直线l的倾斜角为
    C.当时,直线l的斜率不存在
    D.当时,直线l与直线垂直
    10.已知向量,,则下列结论正确的是( )
    A.若,则B.若,则
    C.的最小值为D.的最大值为4
    11.已知四面体满足,,则( )
    A.直线与所成的角为
    B.直线与所成的角为
    C.点M为直线上的动点,M到距离的最小值为
    D.二面角平面角的余弦值为
    三、填空题
    12.直线的倾斜角的取值范围是_________.
    13.在正方体中,点E是上底面的中心,若,则实数________.
    14.在如图所示的试验装置中,两个正方形框架,的边长都是1,且它们所在的平面互相垂直.活动弹子M,N分别在正方形对角线和上移动,且和的长度保持相等,记,当的长最小时,平面与平面夹角的正弦值为_______.
    四、解答题
    15.已知平面内两点,.
    (1)求过点且与直线垂直的直线l的方程.
    (2)若是以C为顶点的等腰直角三角形,求直线的方程.
    16.如图,在正四棱柱中,,E,F分别为,的中点.
    (1)证明:平面.
    (2)求与平面所成角的正弦值.
    17.已知直线.
    (1)求证:直线l经过一个定点;
    (2)若直线l交x轴的正半轴于点A,交y轴的正半轴于点B,O为坐标原点,设的面积为S,求S的最小值及此时直线l的方程.
    18.如图,已知四棱锥的底面是平行四边形,,,是边长为2的等边三角形,,E是线段的中点.
    (1)求证:平面平面;
    (2)若,是否存在,使得平面和平面夹角的余弦值为?若存在,求出的值;若不存在,请说明理由.
    19.如图,在三棱台中,,,N为的中点,二面角的大小为.
    (1)求证:;
    (2)若,求三棱台的体积;
    (3)若A到平面的距离为,求的值.
    参考答案
    1.答案:A
    解析:点关于z轴的对称点为B,
    所以.
    故选:A.
    2.答案:A
    解析:若空间三个向量,,能构成空间的基底,则向量,,不共面,反之亦然,
    对于A,由,,,得,即向量,,共面,不能构成空间基底;
    对于B,令,则,不成立,即,,不共面,可构成基底;
    对于C,令,则,即无解,即,,不共面,可构成基底;
    对于D,令,则,即无解,即,,不共面,可构成基底.
    故选:A
    3.答案:C
    解析:在空间四边形中,E为的中点,则,
    所以.
    故选:C
    4.答案:D
    解析:因为,,,
    所以,,
    因为A,B,C三点共线,所以存在实数k,使,
    所以,
    所以,解得,,.
    故选:D
    5.答案:B
    解析:由得,,
    所以直线的一个方向向量为,
    而,所以也是直线的一个方向向量.
    故选:B.
    6.答案:C
    解析:因为,
    所以

    从而,即的长为.
    故选:C.
    7.答案:A
    解析:由重心坐标公式可得:重心,即.
    由,,可知外心M在的垂直平分线上,
    所以设外心,因为,
    所以,
    解得,即:,
    则,
    故欧拉线方程为:,
    即:,
    故选:A.
    8.答案:A
    解析:在正方体中,以D为坐标原点,分别以,,为x轴,y轴,z轴建立空间直角坐标系,
    ,,,,,
    设,则,
    ,,可得;
    当时,,当时,,
    取,,,,
    连结,,,,
    则,,
    四边形为矩形,则,,
    即,,又和为平面中的两条相交直线,
    平面,
    又,,
    M为的中点,则平面,
    为使,必有点平面,
    又点P在正方体表面上运动,所以点P的轨迹为四边形,
    又,,,则点P的轨迹不是正方形,
    则矩形的周长为.
    9.答案:BD
    解析:对于选项A,直线,令,解得直线l恒过定点,选项A错误;
    对于选项B,当时,设直线l的方程为,斜率为,倾斜角为,选项B正确;
    对于选项C,当时,直线l的方程化为,斜率为0,斜率存在,选项C错误;
    对于选项D,当时,直线,所以.
    由,,可得,得,
    所以直线l与直线垂直,选项D正确.
    故选:BD.
    10.答案:AC
    解析:对于A,若,且,,
    则存在唯一实数使得,即,
    则解得故A正确;
    对于B,若,则,即,无实数解,故B错误;
    ,故当时,取得最小值为,无最大值,故C正确,D错误.故选AC.
    11.答案:BCD
    解析:将四面体放入长方体中,(如图),设长方体的长宽高分别为x,y,z,
    则,,,
    所以解得,,
    建立如图所示空间直角坐标系,则,,,,
    故,,故,
    所以直线与所成的角为,A错误,
    ,,
    由于,故,
    直线与所成的角为,B正确,
    对于C,点M为直线上的动点,当M位于的中点时,此时M到距离的最小,
    且最小值为长方体的高,即为,C正确,
    对于D,取中点E,连接,,由于,,
    所以,,故为所求角,
    ,,
    故,故D正确.
    故选:BCD
    12.答案:
    解析:,故.
    故答案为:.
    13.答案:2
    解析:因为

    又,
    所以,,,.
    故答案:2.
    14.答案:或
    解析:以B原点建立如图所示的空间直角坐标系,
    则,,,,
    因为,所以,,
    所以,
    当时,最小,此时,M,N为中点,则,,
    取的中点G,连接,,则,
    因为,,所以,,
    所以是平面与平面的夹角或其补角,
    因为,,
    所以,
    所以平面与平面夹角的余弦值是,
    所以平面与平面夹角的正弦值是.
    15.答案:(1);
    (2)或
    解析:(1)由题意得,则直线l的斜率为,
    所以过点且与直线垂直的直线l的方程为:,
    即.
    (2)的中点坐标为,
    由(1)可知线段垂线的斜率为,所以线段垂直平分线的方程为,
    即.
    因为是以C为顶点的等腰直角三角形,
    所以点C在直线上,
    故设点C为,
    由可得:,
    解得或,
    所以点C坐标为或,
    则直线的方程为或.
    16.答案:(1)证明见解析;
    (2)
    解析:(1)在正四棱柱中,,,两两垂直,且,
    以A为坐标原点,,,所在直线分别为x轴,y轴,z轴,
    建立如图所示的空间直角坐标系,则,,.
    因为E,F分别为,的中点,所以,,
    则,,,
    设平面的法向量为
    则,即,
    令,则有,,即,
    因为,所以,
    又平面,所以平面;
    (2)由(1)可知,,

    所以与平面所成角的正弦值为.
    17.答案:(1)证明见解析;
    (2),.
    解析:(1)直线,化为,当时,对任意实数k,恒有,所以直线l过定点.
    (2)依题意,显然,直线交x轴于点,交y轴于点,而点A,B分别在x,y轴的正半轴上,即,,于是,
    则的面积为,
    当且仅当,即时取等号,
    所以当时,,直线l的方程的方程为.
    18.答案:(1)证明见解析;
    (2)存在,
    解析:(1)证明:在中,由余弦定理知,,
    所以,即,
    因为,且,平面,
    所以平面,
    又平面,所以平面平面.
    (2)以A为坐标原点,,所在直线分别为x,y轴,作平面,建立如图所示的空间直角坐标系,
    则,,,,,,
    所以,,,
    ,,
    所以

    设平面的法向量为,则,
    即,
    取,则,,所以,
    设平面的法向量为,则,即,
    取,则,,所以,
    因为平面和平面夹角的余弦值为,
    所以,
    整理得,,即,
    解得或,
    因为,所以,
    故存在,使得平面和平面夹角的余弦值为,此时.
    19.答案:(1)证明见解析;
    (2);
    (3)
    解析:(1)取中点为M,连接,;如下图所示:
    易知平面平面,且平面平面,平面平面;
    所以,又因为,
    可得四边形为等腰梯形,
    且M,N分别为,的中点,所以,
    因为,所以,
    易知,且平面,
    所以平面,
    又平面,所以;
    (2)由二面角定义可得,二面角的平面角即为,
    当时,即,因此可得平面,
    可知即为三棱台的高,由,可得;
    易知三棱台的上、下底面面积分别为,,
    因此三棱台的体积为
    (3)由(1)知,,,二面角的平面角即为;
    以M为坐标原点,分别以,所在直线为x,y轴,过点M作垂直于平面的垂线为z轴建立如图所示的空间直角坐标系:
    可得,,,,,
    易知,可得;
    则,
    设平面的一个法向量为,
    所以,
    令,则,,可得;
    显然,
    由A到平面的距离为,可得,
    即,可得;
    整理得,解得或;
    又,可得.
    相关试卷

    沧县中学2024-2025学年高二上学期第一次月考数学试卷(含答案): 这是一份沧县中学2024-2025学年高二上学期第一次月考数学试卷(含答案),共19页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    北京市陈经纶中学2024-2025学年高二上学期阶段性针对训练(10月)数学试卷: 这是一份北京市陈经纶中学2024-2025学年高二上学期阶段性针对训练(10月)数学试卷,共19页。试卷主要包含了10,直线的倾斜角是,圆关于直线对称的圆的标准方程为等内容,欢迎下载使用。

    北京市陈经纶中学2024-2025学年高二上学期阶段性针对训练(10月)数学试卷: 这是一份北京市陈经纶中学2024-2025学年高二上学期阶段性针对训练(10月)数学试卷,共20页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map