江苏省东台市第四联盟2024-2025学年数学九上开学学业质量监测模拟试题【含答案】
展开这是一份江苏省东台市第四联盟2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点中,在反比例函数y=图象上的是( )
A.(2,3)B.(﹣1,6)C.(2,﹣3)D.(﹣12,﹣2)
2、(4分)分式有意义,则 x 的取值范围是( )
A.x 1B.x 0C.x 1D.x 1
3、(4分)下列说法:矩形的对角线互相垂直且平分;菱形的四边相等;一组对边平行,另一组对边相等的四边形是平行四边形;正方形的对角线相等,并且互相垂直平分.其中正确的个数是( )
A.个B.个C.个D.个
4、(4分)已知关于的一元二次方程的一个根是,则的值为( )
A.B.C.D.
5、(4分)如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )
A.-5B.-2C.3D.5
6、(4分)下列说法不能判断是正方形的是( )
A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的矩形
C.对角线相等的菱形D.对角线互相垂直平分的四边形
7、(4分)不等式组的解集在数轴上表示正确的是
A.B.C.D.
8、(4分)对于反比例函数,当时,y的取值范围是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.
10、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.
11、(4分)顺次连结任意四边形各边中点所得到的四边形一定是 .
12、(4分)分解因式:= .
13、(4分)若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲乙两人参加某项体育训练,近期五次测试成绩得分情况如图所示:
(1)分别求出两人得分的平均数;
(2)谁的方差较大?
(3)根据图表和(1)的计算,请你对甲、乙两人的训练成绩作出评价.
15、(8分)在▱ABCD中,AB=BC=9,∠BCD=120°.点M从点A出发沿射线AB方向移动.同时点N从点B出发,以相同的速度沿射线BC方向移动,连接AN,CM,直线AN、CM相交于点P.
(1)如图甲,当点M、N分别在边AB、BC上时,
①求证:AN=CM;
②连接MN,当△BMN是直角三角形时,求AM的值.
(2)当M、N分别在边AB、BC的延长线上时,在图乙中画出点P,并直接写出∠CPN的度数.
16、(8分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.
17、(10分)在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.
(1)在图1中,作线段的垂直平分线;
(2)在图2中,作的角平分线.
18、(10分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
(1)求点的坐标;
(2)求出的面积;
(3)当的值最小时,求此时点的坐标;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.
20、(4分)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为_______.
21、(4分)若在实数范围内有意义,则的取值范围是____________.
22、(4分)将点,向右平移个单位后与点关于轴对称,则点的坐标为______.
23、(4分)已知,则________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.
(1)求k、b的值;
(2)求点B的坐标;
(3)求△ABC的面积.
25、(10分)如图,方格纸中每个小正方形的边长均为1,我们把每个小正方形的顶点叫做格点. 如:线段AB的两个端点都在格点上.
(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在格点上,且平行四边形ABCD的面积为15;
(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在格点上,则菱形ABEF的对角线AE=________,BF=________;
(3)在图3中画一个以AB为边的矩形ABMN(不是正方形),点M、N在格点上,则矩形ABMN的长宽比=______.
26、(12分)(1)因式分解:(x²+4)²-16x²;(2)先化简.再从-1,1,2选取一个合适的数代入求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据反比例函数图象上点的坐标特征进行判断.即当时在反比例函数y=图象上.
【详解】
解:∵2×3=6,﹣1×6=﹣6,2×(﹣3)=﹣6,﹣12×(﹣2)=24,
∴点(2,3)在反比例函数y=图象上.
故选:A.
本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.
2、C
【解析】
分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.
详解:由题意得:x﹣1≠0,解得:x≠1.
故选C.
点睛:本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
3、B
【解析】
根据矩形的性质可得(1)错误;
根据菱形的性质可得(2)正确;
根据平行四边形的判定可得(3)错误;
根据正方形的性质可得(4)正确;
【详解】
(1)矩形的对角线相等且互相平分,故(1)错误;
(2)菱形的四边相等,故(2)正确;
(3)等腰梯形的一组对边平行,另一组对边相等,故(3)错误;
(4)正方形的对角线相等,并且互相垂直平分,故(4)正确.
故选:B.
此题考查的知识点是特殊的四边形,解题关键是掌握正方形、菱形、矩形的特点.
4、C
【解析】
把x=-2代入,即可求出a的值.
【详解】
把x=-2代入,得
4-2a-a=0,
∴a=.
故选C.
本题考查了一元二次方程解的定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
5、B
【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.
【详解】
把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,
∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;
把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,
∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.
即k≤-3或k≥1.
所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.
故选B.
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.
6、D
【解析】
正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件.
【详解】
A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;
B中对角线相互垂直的矩形,可得正方形;
C中对角线相等的菱形,可得正方形;
D中,对角线相互垂直平分,仅可推导出菱形,不正确
故选:D
本题考查证正方形的条件,常见思路为:
(1)先证四边形是平行四边形;
(2)再添加一个菱形特有的条件;
(3)再添加一个矩形特有的条件
7、C
【解析】
试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
.
不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,不等式组的解集﹣2≤x<1在数轴上表示为C.
故选C.
8、A
【解析】
根据反比例函数的k=-6<0,则其图象在第二象限上,y随x的增大而增大,则x=-1时y取得最小值,从而可以得到结果.
【详解】
∵k=-6<0,
∴的图象在第二象限上,y随x的增大而增大,
∴时,
∴.
故选A.
此题重点考查学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4cm
【解析】
先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
【详解】
∵▱ABCD的对角线AC、BD相交于点O,
∴OA=OC,
∵点E是CD的中点,
∴CE=DE,
∴OE是△ACD的中位线,
∵AD=8cm,
∴OE=AD=×8=4cm,
故答案为:4cm.
本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.
10、.
【解析】
直接利用菱形的性质得出BO=3,CO=4,AC⊥BD,进而利用勾股定理以及直角三角形面积求法得出答案.
【详解】
∵四边形ABCD为菱形,
∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,
在Rt△OBC中,∵OB=3,OC=4,
∴BC=,
∵OE⊥BC,
∴OE•BC=OB•OC,
∴OE=.
11、平行四边形
【解析】
试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.
考点:平行四边形的判定
12、
【解析】
试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
先提取公因式后继续应用平方差公式分解即可:。
13、一
【解析】
试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
∴k﹣1<0且k+1<0, 解得:k<﹣1,
∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
考点:一次函数的性质
三、解答题(本大题共5个小题,共48分)
14、(1)13,13;(2)4,0.8;甲的方差大;(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大.
【解析】
(1)根据图形,分别写出甲、乙两个人这五次的成绩,甲:10,13,12,14,16;乙:13,14,12,12,14;再根据平均数进行计算即可;
(2)由(1)利用和方差的公式进行计算即可
(3)根据方差和平均数的结果进行分析即可.
【详解】
(1)两人得分的平均数:甲=(10+13+12+14+16)=13,
乙=(13+14+12+12+14)=13,
(2)方差:甲=(9+0+1+1+9)=4,
乙=(0+1+1+1+1)=0.8,
甲的方差大。
(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大。
此题考查折线统计图,算术平均数,方差,解题关键在于掌握运算法则
15、(1)①见解析②3或6(2)120°
【解析】
(1)①连接AC,先证△ABC是等边三角形得AB=CA=9、∠B=∠CAB=60°,由BN=AM证△ABN≌△CAM即可得;
②分∠MNB=90°和∠NMB=90°两种情况,由∠B=60°得出另一个锐角为30°,根据直角三角形中30°角所对边等于斜边的一半及AM=BN求解可得;
(2)根据题意作出图形,连接AC,先证△BAN≌△ACM得∠N=∠M,由∠NCP=∠MCB知∠CPN=∠CBM,根据AB∥CD、∠BCD=120°可得∠CPN=∠CBM=120°.
【详解】
(1)①如图1,连接AC,
在▱ABCD中,AB∥DC,
∴∠B=180°﹣∠BCD=180°﹣120°=60°,
又∵AB=BC=9,
∴△ABC是等边三角形,
∴AB=CA=9,∠B=∠CAB=60°,
又∵BN=AM,
∴△ABN≌△CAM(SAS),
∴AN=CM;
②如图2,
(Ⅰ)当∠MNB=90°时,
∵∠B=60°,
∴∠BMN=90°﹣60°=30°,
∴BN=BM,
又∵BN=AM,
∴AM=(9﹣AM),
∴AM=3;
(Ⅱ)当∠NMB=90°时,∠BNM=90°﹣60°=30°,
∴BM=BN,
∴9﹣AM=AM,
∴AM=6;
综上所述,当△BMN是直角三角形时,AM的值为3或6;
(2)如图3所示,
点P即为所求;
∠CPN=120°,
连接AC,
由(1)知△ABC是等边三角形,
∴∠BAN=∠CAM=60°、AB=CA,
又∵BN=AM,
∴△BAN≌△ACM(SAS),
∴∠N=∠M,
∵∠NCP=∠MCB,
∴∠CPN=∠CBM,
∵AB∥CD,∠BCD=120°,
∴∠CPN=∠CBM=120°.
本题主要考查四边形的综合问题,解题的关键是掌握平行四边形的性质、等边三角形的判定与性质、直角三角形的性质及分类讨论思想的运用.
16、 (1)1s;(2) s;(3)3s.
【解析】
(1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;
(2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;
(3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可.
【详解】
(1)设经过t(s),四边形PQCD为平行四边形
即PD=CQ
所以24-t=3t,
解得:t=1.
(2)设经过t(s),四边形PQBA为矩形,
即AP=BQ,
所以t=21-3t,
解得:t=.
(3)设经过t(s),四边形PQCD是等腰梯形.
过Q点作QE⊥AD,过D点作DF⊥BC,
∴∠QEP=∠DFC=90°
∵四边形PQCD是等腰梯形,
∴PQ=DC.
又∵AD∥BC,∠B=90°,
∴AB=QE=DF.
在Rt△EQP和Rt△FDC中,
,
∴Rt△EQP≌Rt△FDC(HL).
∴FC=EP=BC-AD=21-24=2.
又∵AE=BQ=21-3t,
∴EP=AP-AE=t-(21-3t)=2.
得:t=3.
∴经过3s,PQ=CD.
此题主要考查平行四边形、矩形及等腰梯形的判定掌握情况,本题解题关键是找出等量关系即可得解.
17、见解析.
【解析】
(1)直接利用矩形的性质得出AB的中点,再利用AB为底得出等腰三角形进而得出答案;
(2)借助网格利用等腰三角形的性质得出答案.
【详解】
(1)如图所示:直线CD即为所求;
(2)如图所示:射线BD即为所求.
此题主要考查了应用设计与作图,正确借助网格分析是解题关键.
18、 (1)点;(2);(3)点.
【解析】
(1)联立两直线解析式组成方程组,解得即可得出结论;
(2)将代入,求出OB的长,再利用 (1)中的结论点,即可求出的面积;
(3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.
【详解】
解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,
∴
解得:
∴点;
(2) ∵把代入,
解得:,
∴,
又∵点,
∴
;
(3) 如图,作点A(-3,0)关于y轴的对称点A'(3,0),
连接CA'交y轴于点P,此时,PC+PA最小,
最小值为CA'=,
由(1)知,,
∵A'(3,0),
∴直线A'C的解析式为,
∴点.
此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.
【详解】
解:∵四边形ABCD为平行四边形,
∴AO=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF,
∴OF=OE=1.5,CF=AE,
根据平行四边形的对边相等,得
CD=AB=4,AD=BC=5,
故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
故答案为:1.
本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.
20、.
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:将88300000用科学记数法表示为:.
故答案为:.
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
21、且.
【解析】
分析:根据分式有意义和二次根式有意义的条件解题.
详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
故答案为x≥0且x≠1.
点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
22、 (4,-3)
【解析】
让点A的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.
【详解】
将点A向右平移4个单位后,横坐标为0+4=4,纵坐标为3
∴平移后的坐标是(4,3)
∵平移后关于x轴对称的点的横坐标为4,纵坐标为-3
∴它关于x轴对称的点的坐标是(4,-3)
此题考查点的平移,关于x轴对称点的坐标特征,解题关键在于掌握知识点
23、
【解析】
由,即成比例的数的问题中,设出辅助参量表示另外两个量代入求值即可,
【详解】
解:因为,设 则
所以.
故答案为:
本题考查以成比例的数为条件求分式的值是常规题,掌握辅助参量法是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)k=-1,b=4; (2)B( ,);(3)△ABC的面积为3.75.
【解析】
(1)将A点和D点的坐标代入到一次函数的一般形式,求得k、b的值即可;
(2)两函数联立组成方程组求得方程组的解后即可求得点B的坐标;
(3)首先求得点C的坐标,然后利用S△ABC=S△ACD-S△BCD求解即可.
【详解】
解:(1)把A(0,4)和D(4,0)代入y=kx+b得:
解得 ;
(2)由(1)得y=-x+4,联立
解得 ,
所以B( ,);
(3)由y=x+1,当y=0时,x+1=0,解得x=-1,
所以点C(-1,0)
所以S△ABC=S△ACD-S△BCD=×5×4-×5×=3.75;
本题考查两条直线平行或相交的问题,求两条直线的交点坐标时通常联立后组成方程组求解.
25、(1)答案见详解;(1),;(3)1.
【解析】
(1)如图1中,根据平行四边形的定义,画出第为5,高为3的平行四边形即可.
(1)如图1中,根据菱形的判定画出图形即可.
(3)根据矩形的定义画出图形即可.
【详解】
解:(1)如图1中,平行四边形即为所求;
(1)如图1中,菱形即为所求.,,
故答案为,;
(3)如图3中,矩形即为所求,;
故答案为1.
本题考查勾股定理,菱形的性质,矩形的性质等知识,熟练掌握基本知识是解题的关键.
26、(1);(2) .
【解析】
(1)先用平方差公式分解,再用完全平方公式二次分解;
(2)把除法转化为乘法,并把分子、分母分解因式约分,然后从-1,1,2选取一个使原分式有意义的数代入计算即可.
【详解】
(1)(x²+4)²-16x²
=(x²+4+4x)(x²+4-4x)
=(x+2)²(x-2)²;
(2)原式=
,
由题意,x≠±2且x≠1,
∴当x=-1时,原式= .
本题考查了因式分解,分式的化简求值,熟练掌握因式分解的方法是解(1)的关键,熟练掌握分式的运算法则是解(2)的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份江苏省东台市实验中学教育集团2024年九上数学开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省东台市第四联盟2024年九上数学开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省东台市第二联盟数学九上开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。