终身会员
搜索
    上传资料 赚现金

    江苏省东台市第四联盟2024-2025学年数学九上开学学业质量监测模拟试题【含答案】

    立即下载
    加入资料篮
    江苏省东台市第四联盟2024-2025学年数学九上开学学业质量监测模拟试题【含答案】第1页
    江苏省东台市第四联盟2024-2025学年数学九上开学学业质量监测模拟试题【含答案】第2页
    江苏省东台市第四联盟2024-2025学年数学九上开学学业质量监测模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省东台市第四联盟2024-2025学年数学九上开学学业质量监测模拟试题【含答案】

    展开

    这是一份江苏省东台市第四联盟2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各点中,在反比例函数y=图象上的是( )
    A.(2,3)B.(﹣1,6)C.(2,﹣3)D.(﹣12,﹣2)
    2、(4分)分式有意义,则 x 的取值范围是( )
    A.x  1B.x  0C.x  1D.x  1
    3、(4分)下列说法:矩形的对角线互相垂直且平分;菱形的四边相等;一组对边平行,另一组对边相等的四边形是平行四边形;正方形的对角线相等,并且互相垂直平分.其中正确的个数是( )
    A.个B.个C.个D.个
    4、(4分)已知关于的一元二次方程的一个根是,则的值为( )
    A.B.C.D.
    5、(4分)如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )
    A.-5B.-2C.3D.5
    6、(4分)下列说法不能判断是正方形的是( )
    A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的矩形
    C.对角线相等的菱形D.对角线互相垂直平分的四边形
    7、(4分)不等式组的解集在数轴上表示正确的是
    A.B.C.D.
    8、(4分)对于反比例函数,当时,y的取值范围是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.
    10、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.
    11、(4分)顺次连结任意四边形各边中点所得到的四边形一定是 .
    12、(4分)分解因式:= .
    13、(4分)若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲乙两人参加某项体育训练,近期五次测试成绩得分情况如图所示:
    (1)分别求出两人得分的平均数;
    (2)谁的方差较大?
    (3)根据图表和(1)的计算,请你对甲、乙两人的训练成绩作出评价.
    15、(8分)在▱ABCD中,AB=BC=9,∠BCD=120°.点M从点A出发沿射线AB方向移动.同时点N从点B出发,以相同的速度沿射线BC方向移动,连接AN,CM,直线AN、CM相交于点P.
    (1)如图甲,当点M、N分别在边AB、BC上时,
    ①求证:AN=CM;
    ②连接MN,当△BMN是直角三角形时,求AM的值.
    (2)当M、N分别在边AB、BC的延长线上时,在图乙中画出点P,并直接写出∠CPN的度数.
    16、(8分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
    (1)经过多长时间,四边形PQCD是平行四边形?
    (2)经过多长时间,四边形PQBA是矩形?
    (3)经过多长时间,当PQ不平行于CD时,有PQ=CD.
    17、(10分)在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.

    (1)在图1中,作线段的垂直平分线;
    (2)在图2中,作的角平分线.
    18、(10分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
    (1)求点的坐标;
    (2)求出的面积;
    (3)当的值最小时,求此时点的坐标;
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.
    20、(4分)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为_______.
    21、(4分)若在实数范围内有意义,则的取值范围是____________.
    22、(4分)将点,向右平移个单位后与点关于轴对称,则点的坐标为______.
    23、(4分)已知,则________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.
    (1)求k、b的值;
    (2)求点B的坐标;
    (3)求△ABC的面积.
    25、(10分)如图,方格纸中每个小正方形的边长均为1,我们把每个小正方形的顶点叫做格点. 如:线段AB的两个端点都在格点上.
    (1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在格点上,且平行四边形ABCD的面积为15;
    (2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在格点上,则菱形ABEF的对角线AE=________,BF=________;
    (3)在图3中画一个以AB为边的矩形ABMN(不是正方形),点M、N在格点上,则矩形ABMN的长宽比=______.

    26、(12分)(1)因式分解:(x²+4)²-16x²;(2)先化简.再从-1,1,2选取一个合适的数代入求值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据反比例函数图象上点的坐标特征进行判断.即当时在反比例函数y=图象上.
    【详解】
    解:∵2×3=6,﹣1×6=﹣6,2×(﹣3)=﹣6,﹣12×(﹣2)=24,
    ∴点(2,3)在反比例函数y=图象上.
    故选:A.
    本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.
    2、C
    【解析】
    分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.
    详解:由题意得:x﹣1≠0,解得:x≠1.
    故选C.
    点睛:本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
    3、B
    【解析】
    根据矩形的性质可得(1)错误;
    根据菱形的性质可得(2)正确;
    根据平行四边形的判定可得(3)错误;
    根据正方形的性质可得(4)正确;
    【详解】
    (1)矩形的对角线相等且互相平分,故(1)错误;
    (2)菱形的四边相等,故(2)正确;
    (3)等腰梯形的一组对边平行,另一组对边相等,故(3)错误;
    (4)正方形的对角线相等,并且互相垂直平分,故(4)正确.
    故选:B.
    此题考查的知识点是特殊的四边形,解题关键是掌握正方形、菱形、矩形的特点.
    4、C
    【解析】
    把x=-2代入,即可求出a的值.
    【详解】
    把x=-2代入,得
    4-2a-a=0,
    ∴a=.
    故选C.
    本题考查了一元二次方程解的定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
    5、B
    【解析】
    当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.
    【详解】
    把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,
    ∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;
    把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,
    ∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.
    即k≤-3或k≥1.
    所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.
    故选B.
    本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.
    6、D
    【解析】
    正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件.
    【详解】
    A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;
    B中对角线相互垂直的矩形,可得正方形;
    C中对角线相等的菱形,可得正方形;
    D中,对角线相互垂直平分,仅可推导出菱形,不正确
    故选:D
    本题考查证正方形的条件,常见思路为:
    (1)先证四边形是平行四边形;
    (2)再添加一个菱形特有的条件;
    (3)再添加一个矩形特有的条件
    7、C
    【解析】
    试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,

    不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,不等式组的解集﹣2≤x<1在数轴上表示为C.
    故选C.
    8、A
    【解析】
    根据反比例函数的k=-6<0,则其图象在第二象限上,y随x的增大而增大,则x=-1时y取得最小值,从而可以得到结果.
    【详解】
    ∵k=-6<0,
    ∴的图象在第二象限上,y随x的增大而增大,
    ∴时,
    ∴.
    故选A.
    此题重点考查学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4cm
    【解析】
    先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
    【详解】
    ∵▱ABCD的对角线AC、BD相交于点O,
    ∴OA=OC,
    ∵点E是CD的中点,
    ∴CE=DE,
    ∴OE是△ACD的中位线,
    ∵AD=8cm,
    ∴OE=AD=×8=4cm,
    故答案为:4cm.
    本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.
    10、.
    【解析】
    直接利用菱形的性质得出BO=3,CO=4,AC⊥BD,进而利用勾股定理以及直角三角形面积求法得出答案.
    【详解】
    ∵四边形ABCD为菱形,
    ∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,
    在Rt△OBC中,∵OB=3,OC=4,
    ∴BC=,
    ∵OE⊥BC,
    ∴OE•BC=OB•OC,
    ∴OE=.
    11、平行四边形
    【解析】
    试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.
    考点:平行四边形的判定
    12、
    【解析】
    试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
    先提取公因式后继续应用平方差公式分解即可:。
    13、一
    【解析】
    试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
    ∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
    ∴k﹣1<0且k+1<0, 解得:k<﹣1,
    ∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
    考点:一次函数的性质
    三、解答题(本大题共5个小题,共48分)
    14、(1)13,13;(2)4,0.8;甲的方差大;(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大.
    【解析】
    (1)根据图形,分别写出甲、乙两个人这五次的成绩,甲:10,13,12,14,16;乙:13,14,12,12,14;再根据平均数进行计算即可;
    (2)由(1)利用和方差的公式进行计算即可
    (3)根据方差和平均数的结果进行分析即可.
    【详解】
    (1)两人得分的平均数:甲=(10+13+12+14+16)=13,
    乙=(13+14+12+12+14)=13,
    (2)方差:甲=(9+0+1+1+9)=4,
    乙=(0+1+1+1+1)=0.8,
    甲的方差大。
    (3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大。
    此题考查折线统计图,算术平均数,方差,解题关键在于掌握运算法则
    15、(1)①见解析②3或6(2)120°
    【解析】
    (1)①连接AC,先证△ABC是等边三角形得AB=CA=9、∠B=∠CAB=60°,由BN=AM证△ABN≌△CAM即可得;
    ②分∠MNB=90°和∠NMB=90°两种情况,由∠B=60°得出另一个锐角为30°,根据直角三角形中30°角所对边等于斜边的一半及AM=BN求解可得;
    (2)根据题意作出图形,连接AC,先证△BAN≌△ACM得∠N=∠M,由∠NCP=∠MCB知∠CPN=∠CBM,根据AB∥CD、∠BCD=120°可得∠CPN=∠CBM=120°.
    【详解】
    (1)①如图1,连接AC,
    在▱ABCD中,AB∥DC,
    ∴∠B=180°﹣∠BCD=180°﹣120°=60°,
    又∵AB=BC=9,
    ∴△ABC是等边三角形,
    ∴AB=CA=9,∠B=∠CAB=60°,
    又∵BN=AM,
    ∴△ABN≌△CAM(SAS),
    ∴AN=CM;
    ②如图2,
    (Ⅰ)当∠MNB=90°时,
    ∵∠B=60°,
    ∴∠BMN=90°﹣60°=30°,
    ∴BN=BM,
    又∵BN=AM,
    ∴AM=(9﹣AM),
    ∴AM=3;
    (Ⅱ)当∠NMB=90°时,∠BNM=90°﹣60°=30°,
    ∴BM=BN,
    ∴9﹣AM=AM,
    ∴AM=6;
    综上所述,当△BMN是直角三角形时,AM的值为3或6;
    (2)如图3所示,
    点P即为所求;
    ∠CPN=120°,
    连接AC,
    由(1)知△ABC是等边三角形,
    ∴∠BAN=∠CAM=60°、AB=CA,
    又∵BN=AM,
    ∴△BAN≌△ACM(SAS),
    ∴∠N=∠M,
    ∵∠NCP=∠MCB,
    ∴∠CPN=∠CBM,
    ∵AB∥CD,∠BCD=120°,
    ∴∠CPN=∠CBM=120°.
    本题主要考查四边形的综合问题,解题的关键是掌握平行四边形的性质、等边三角形的判定与性质、直角三角形的性质及分类讨论思想的运用.
    16、 (1)1s;(2) s;(3)3s.
    【解析】
    (1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;
    (2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;
    (3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可.
    【详解】
    (1)设经过t(s),四边形PQCD为平行四边形
    即PD=CQ
    所以24-t=3t,
    解得:t=1.
    (2)设经过t(s),四边形PQBA为矩形,
    即AP=BQ,
    所以t=21-3t,
    解得:t=.
    (3)设经过t(s),四边形PQCD是等腰梯形.
    过Q点作QE⊥AD,过D点作DF⊥BC,
    ∴∠QEP=∠DFC=90°
    ∵四边形PQCD是等腰梯形,
    ∴PQ=DC.
    又∵AD∥BC,∠B=90°,
    ∴AB=QE=DF.
    在Rt△EQP和Rt△FDC中,

    ∴Rt△EQP≌Rt△FDC(HL).
    ∴FC=EP=BC-AD=21-24=2.
    又∵AE=BQ=21-3t,
    ∴EP=AP-AE=t-(21-3t)=2.
    得:t=3.
    ∴经过3s,PQ=CD.
    此题主要考查平行四边形、矩形及等腰梯形的判定掌握情况,本题解题关键是找出等量关系即可得解.
    17、见解析.
    【解析】
    (1)直接利用矩形的性质得出AB的中点,再利用AB为底得出等腰三角形进而得出答案;
    (2)借助网格利用等腰三角形的性质得出答案.
    【详解】
    (1)如图所示:直线CD即为所求;
    (2)如图所示:射线BD即为所求.
    此题主要考查了应用设计与作图,正确借助网格分析是解题关键.
    18、 (1)点;(2);(3)点.
    【解析】
    (1)联立两直线解析式组成方程组,解得即可得出结论;
    (2)将代入,求出OB的长,再利用 (1)中的结论点,即可求出的面积;
    (3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.
    【详解】
    解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,

    解得:
    ∴点;
    (2) ∵把代入,
    解得:,
    ∴,
    又∵点,


    (3) 如图,作点A(-3,0)关于y轴的对称点A'(3,0),
    连接CA'交y轴于点P,此时,PC+PA最小,
    最小值为CA'=,
    由(1)知,,
    ∵A'(3,0),
    ∴直线A'C的解析式为,
    ∴点.
    此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴AO=OC,AD∥BC,
    ∴∠EAO=∠FCO,
    在△AOE和△COF中,

    ∴△AOE≌△COF,
    ∴OF=OE=1.5,CF=AE,
    根据平行四边形的对边相等,得
    CD=AB=4,AD=BC=5,
    故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
    故答案为:1.
    本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.
    20、.
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    解:将88300000用科学记数法表示为:.
    故答案为:.
    此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    21、且.
    【解析】
    分析:根据分式有意义和二次根式有意义的条件解题.
    详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
    故答案为x≥0且x≠1.
    点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
    22、 (4,-3)
    【解析】
    让点A的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.
    【详解】
    将点A向右平移4个单位后,横坐标为0+4=4,纵坐标为3
    ∴平移后的坐标是(4,3)
    ∵平移后关于x轴对称的点的横坐标为4,纵坐标为-3
    ∴它关于x轴对称的点的坐标是(4,-3)
    此题考查点的平移,关于x轴对称点的坐标特征,解题关键在于掌握知识点
    23、
    【解析】
    由,即成比例的数的问题中,设出辅助参量表示另外两个量代入求值即可,
    【详解】
    解:因为,设 则
    所以.
    故答案为:
    本题考查以成比例的数为条件求分式的值是常规题,掌握辅助参量法是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)k=-1,b=4; (2)B( ,);(3)△ABC的面积为3.75.
    【解析】
    (1)将A点和D点的坐标代入到一次函数的一般形式,求得k、b的值即可;
    (2)两函数联立组成方程组求得方程组的解后即可求得点B的坐标;
    (3)首先求得点C的坐标,然后利用S△ABC=S△ACD-S△BCD求解即可.
    【详解】
    解:(1)把A(0,4)和D(4,0)代入y=kx+b得:

    解得 ;
    (2)由(1)得y=-x+4,联立
    解得 ,
    所以B( ,);
    (3)由y=x+1,当y=0时,x+1=0,解得x=-1,
    所以点C(-1,0)
    所以S△ABC=S△ACD-S△BCD=×5×4-×5×=3.75;
    本题考查两条直线平行或相交的问题,求两条直线的交点坐标时通常联立后组成方程组求解.
    25、(1)答案见详解;(1),;(3)1.
    【解析】
    (1)如图1中,根据平行四边形的定义,画出第为5,高为3的平行四边形即可.
    (1)如图1中,根据菱形的判定画出图形即可.
    (3)根据矩形的定义画出图形即可.
    【详解】
    解:(1)如图1中,平行四边形即为所求;
    (1)如图1中,菱形即为所求.,,
    故答案为,;
    (3)如图3中,矩形即为所求,;
    故答案为1.
    本题考查勾股定理,菱形的性质,矩形的性质等知识,熟练掌握基本知识是解题的关键.
    26、(1);(2) .
    【解析】
    (1)先用平方差公式分解,再用完全平方公式二次分解;
    (2)把除法转化为乘法,并把分子、分母分解因式约分,然后从-1,1,2选取一个使原分式有意义的数代入计算即可.
    【详解】
    (1)(x²+4)²-16x²
    =(x²+4+4x)(x²+4-4x)
    =(x+2)²(x-2)²;
    (2)原式=

    由题意,x≠±2且x≠1,
    ∴当x=-1时,原式= .
    本题考查了因式分解,分式的化简求值,熟练掌握因式分解的方法是解(1)的关键,熟练掌握分式的运算法则是解(2)的关键.
    题号





    总分
    得分

    相关试卷

    江苏省东台市实验中学教育集团2024年九上数学开学学业质量监测试题【含答案】:

    这是一份江苏省东台市实验中学教育集团2024年九上数学开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省东台市第四联盟2024年九上数学开学质量检测试题【含答案】:

    这是一份江苏省东台市第四联盟2024年九上数学开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省东台市第二联盟数学九上开学监测模拟试题【含答案】:

    这是一份2024年江苏省东台市第二联盟数学九上开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map