![江苏省庙头中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】01](http://www.enxinlong.com/img-preview/2/3/16283845/0-1729691159043/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省庙头中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】02](http://www.enxinlong.com/img-preview/2/3/16283845/0-1729691159104/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省庙头中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】03](http://www.enxinlong.com/img-preview/2/3/16283845/0-1729691159146/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省庙头中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)要使分式有意义,则x的取值满足的条件是( )
A.B.C.D.
2、(4分)在平面直角坐标系中,直线与y轴交于点A,如图所示,依次正方形,正方形,……,正方形,且正方形的一条边在直线m上,一个顶点x轴上,则正方形的面积是( )
A.B.C.D.
3、(4分)下列计算正确的是( )。
A.B.C.D.
4、(4分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=( )
A.33°B.80°C.57°D.67°
5、(4分)若代数式在实数范围内有意义,则a的取值范围是( )
A.a≠0B.a>2C.a≥2D.a≥2且a≠0
6、(4分)将点向左平移4个单位长度得点,则点的坐标是( )
A.B.C.D.
7、(4分)直角三角形的两条直角边分别是6,8,则此直角三角形三条中线的和是( )
A.B.
C.D.
8、(4分)中国“一带一路”战略沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入为美元,预计2019年人均收入将达到美元,设2017年到2019年该地区居民年人均收入平均增长率为,可列方程为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,点分别在上,且,,则___________
10、(4分)把二次函数y= -2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是 _____________;
11、(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
12、(4分)计算:=______.
13、(4分)已知一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),则关于x的方程x+2=mx+n的解是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,函数的图象与函数的图象交于点,.
(1)求函数的表达式;
(2)观察图象,直接写出不等式的解集;
(3)若点是轴上的动点,当周长最小时,求点的坐标.
15、(8分)计算题:
(1);
(2);
(3);
(4).
16、(8分)解方程:
(1);(2).
17、(10分)某学校积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对所在社区的一些区域进行绿化改造,已知乙工程队每小时能完成的绿化面积是甲工程队每小时能完成的绿化面积的1.5倍,并且乙工程队完成200平方米的绿化面积比甲工程队完成200平方米的绿化面积少用2小时,甲工程队每小时能完成多少平方米的绿化面积?
18、(10分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:
现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:
(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;
(2)补全图中的条形统计图;
(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.
20、(4分)八年级(1)班安排了甲、乙、丙、丁四名同学参加4×100米接力赛,打算抽签决定四人的比赛顺序,则甲跑第一棒的概率为______.
21、(4分)函数中,自变量________的取值范围是________.
22、(4分)将直线y=2x向下平移2个单位,所得直线的函数表达式是_____.
23、(4分)当________时,方程无解.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:
(1)本次共抽查学生 人,并将条形图补充完整;
(2)捐款金额的众数是 ,中位数是 ;
(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?
25、(10分)阅读材料,解答问题:
有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:的有理化因式是;1﹣的有理化因式是1+.
分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:
﹣1,.
请根据上述材料,计算:的值.
26、(12分)某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:
(1)本次调查学生共 人,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据分式有意义的条件是分母不等于零可得x+2≠0;解不等式可得结果,从而得出正确选项.
【详解】
由分式有意义的条件可得x+2≠0,
解得x≠-2.
故答案选B.
本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.
2、B
【解析】
由一次函数,得出点A的坐标为(0,1),求出正方形M1的边长,即可求出正方形M1的面积,同理求出正方形M2的面积,即可推出正方形的面积.
【详解】
一次函数,令x=0,则y=1,
∴点A的坐标为(0,1),
∴OA=1,
∴正方形M1的边长为,
∴正方形M1的面积=,
∴正方形M1的对角线为,
∴正方形M2的边长为,
∴正方形M2的面积=,
同理可得正方形M3的面积=,
则正方形的面积是,
故选B.
本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.
3、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
解:(A)原式=,故A错误;
(B)原式=3,故B错误;
(C)原式=,故C正确;
(D)原式=2 ,故D错误;
故选:C
本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
4、A
【解析】
根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.
【详解】
解:在△ABC中,∠A=33°,
∴由平移中对应角相等,得∠EDF=∠A=33°.
故选:A.
此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.
5、C
【解析】
根据二次根式的被开方数是非负数,且分母不为0即可解答.
【详解】
解:∵代数式在实数范围内有意义,
∴a﹣1≥0,a≠0,
解得:a≥1.
故选C.
本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
6、B
【解析】
将点A的横坐标减4,纵坐标不变,即可得出点A′的坐标.
【详解】
解:将点A(3,3)向左平移4个单位长度得点A′,则点A′的坐标是(3-4,3),即(-1,3),
故选:B.
此题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
7、C
【解析】
利用勾股定理,根据中线的定义计算即可.
【详解】
解:∵直角三角形的两条直角边分别是6,8,
∴斜边=10,
∴此直角三角形三条中线的和= ,
故选:C.
此题考查了勾股定理的运用以及中线的定义,比较基础,注意数据的计算.
8、B
【解析】
用增长后的量=增长前的量×(1+增长率),如果设1017年到1019年该地区居民年人均收入平均增长率为x,那么根据题意可用x表示1019年年人均收入,然后根据已知可以得出关系式.
【详解】
设1017年到1019年该地区居民年人均收入平均增长率为x,那么根据题意得1019年年人均收入为:300(x+1)1,则
1100=300(x+1)1.
故选:B.
考查了根据实际问题列二次函数关系式,对于平均增长率问题,一般形式为a(1+x)1=b,a为起始时间的有关数量,b为终止时间的有关数量.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.
【详解】
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴ ,
故答案为:.
此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
10、y= -2x2+12x-2
【解析】
先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.
【详解】
解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.
按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得
y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
故答案为:y=-2x2+12x-2.
本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.
11、150km/h
【解析】
假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.
【详解】
解:设快车的速度为a(km/h),慢车的速度为b(km/h),
∴4(a+b)=900,
∵慢车到达甲地的时间为12小时,
∴12b=900,
b=75,
∴4(a+75)=900,
解得:a=150;
∴快车的速度为150km/h.
故答案为:150km/h.
此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.
12、.
【解析】
解:=;故答案为:.
点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.
13、x=-4
【解析】
先根据一次函数y=x+2的解析式求出点P的坐标,然后利用两个一次函数图象的交点与方程x+2=mx+n的解的关系即可得出答案.
【详解】
∵一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),
∴ ,
解得 ,
∴ .
∵两个一次函数的图象的交点的横坐标为x+2=mx+n的解,
∴关于x的方程x+2=mx+n的解是 ,
故答案为:.
本题主要考查两个一次函数的交点与一元一次方程的解的关系,掌握两个一次函数的交点与一元一次方程的解的关系是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2)或;(3)点的坐标为.
【解析】
(1)先把A(1,a),B(b,2)分别代入y=-2x+8中求出a、b的值得到A(1,6),B(3,2),然后把A点坐标代入中得到k的值,从而得到反比例函数解析式;
(2)写出一次函数图象在反比例函数图像上方所对应的自变量的范围即可;
(3)作点A关于y轴的对称点A′,连接BA′交y轴于P,如图,则A′(-1,6),根据两点之间线段最短判断此时PA+PB的值最小,△ABP周长最小,然后利用待定系数法求出直线A′B的解析式,从而得到点P的坐标.
【详解】
解:(1)把,分别代入得,
,解得,
∴,;
把代入得,
∴反比例函数解析式为;
(2)不等式的解集为或;
(3)作点关于轴的对称点,连接交轴于,如图,则,
∵,
∴此时的值最小,周长最小,
设直线的解析式为,
把,代入得,解得,
∴直线的解析式为,
∴点的坐标为.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
15、(1);(2);(3);(4)
【解析】
(1)先计算零指数和负整数指数次幂,再从左至右计算即可;
(2)根据多项式除单项式的运算法则计算即可;
(3)利用平方差公式进行简便运算即可;
(4)利用平方差公式展开,再运用完全平方公式进一步展开即可.
【详解】
(1)
;
(2)
;
(3)
;
(4)
.
本题考查了有理数的混合运算以及整式的混合运算,熟练掌握平方差公式的结构特征是解题的关键.
16、(2)原方程无解;(2)x= 2
【解析】
根据去分母,去括号转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(2)解:方程两边同乘(x-2),得3x+2=2.解这个方程,得x=2.
经检验:x=2是增根,舍去,所以原方程无解。
(2)解:方程两边同乘(x2),得2x=x22.
解这个方程,得x= 2.
经检验:x= 2是原方程的解.
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要注意验根.
17、甲工程队每小时能完成平方米的绿化面积.
【解析】
设甲工程队每小时能完成x平方米的绿化面积,则乙工程队每小时能完成1.5x平方米的绿化面积,根据工作时间=工作总量÷工作效率结合乙工程队完成200平方米的绿化面积比甲工程队完成200平方米的绿化面积少用2小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设甲工程队每小时能完成x平方米的绿化面积,则乙工程队每小时能完成的绿化面积是1.5x平方米,则有
,
解得:x=,经检验是原方程的根,
所以,甲工程队每小时能完成平方米的绿化面积.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
18、(1)100;;(2)补图见解析;(3)240人.
【解析】
根据条件图可知(1)一共抽取学生名,图中等级为D级的扇形的圆心角等于;(2)求出等级人数为名,再画图;(3)由(2)估计该校等级为C级的学生约有.
【详解】
解:在这次调查中,一共抽取学生名,
图中等级为D级的扇形的圆心角等于,
故答案为100、;
等级人数为名,
补全图形如下:
估计该校等级为C级的学生约有人.
本题考核知识点:统计图,由样本估计总体. 解题关键点:从统计图获取信息.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.
【详解】
解:∵四边形AFCE是正方形,
∴AE=EC,∠E=90°,
△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,
∴△ABF≌△ADE,
∴正方形AFCE的面积=四边形ABCD的面积=18cm1.
∴AE=CE==,
∴AC=AE=2cm.
故答案为:2.
本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.
20、
【解析】
【分析】抽签有4种可能的结果,其中抽到甲的只有一种结果,根据概率公式进行计算即可得.
【详解】甲、乙、丙、丁四人都有机会跑第一棒,而且机会是均等的,
抽签抽到甲跑第一棒有一种可能,
所以甲跑第一棒的概率为,
故答案为:.
【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.
21、且
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于O,可以求出x的范围.
【详解】
解:根据题意得:
计算得出: x≥-2且x≠1.
故答案是: x≥-2且x≠1.
本题考查了二次根式被开方数大于等于0及分式中分母不能为0等知识.
22、y=1x﹣1.
【解析】
解:根据一次函数的平移,上加下减,可知一次函数的表达式为y=1x-1.
23、1
【解析】
根据分式方程无解,得到1−x= 0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.
【详解】
解:分式方程去分母得:m=2(1−x)+1,
由分式方程无解,得到1−x=0,即x=1,
代入整式方程得:m=1.
故答案为:1.
此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)10,将条形图补充完整见解析;(2)众数是10,中位数是12.1;(3)捐款20元及以上(含20元)的学生有187人.
【解析】
分析:(1)由题意可知,捐款11元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款1、11、20、21元的人数可得捐10元的人数;
(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将这组数据按照从小到大的顺序排列,处于中间位置的数就是这组数据的中位数;
(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.
详解:(1)本次抽查的学生有:14÷28%=10(人),则捐款10元的有10﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:
故答案为:10;
(2)由条形图可知,捐款10元人数最多,故众数是10;
将这组数据按照从小到大的顺序排列,中间两个数据分别是10,11,所以中位数是(10+11)÷2=12.1.
故答案为:10,12.1;
(3)捐款20元及以上(含20元)的学生有:810×=187(人).
点睛:本题主要考查了条形统计图,扇形统计图,众数和中位数,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
25、
【解析】
分别把每个加数分母有理化,再合并即可得到答案.
【详解】
解:
本题考查的是分母有理化,即二次根式的除法运算,掌握分母有理化的方法是解题的关键.
26、(1)300;(2)选择“跑步”这种活动的学生约有800人;(3)
【解析】
(1)用A类的人数除以它所占的百分比得到调查的总人数,再用总人数减去其它项目的人数,求出跳绳的人数,从而补全统计图;
(2)用该校的总人数乘以“跑步”的人数所占的百分比即可;
(3)画树状图展示所有12种等可能的结果数,找出每班抽取的两种形式恰好是“做操”和“跳绳”的结果数,然后利用概率公式求解.
【详解】
(1)根据题意得:120÷40%=300(人),
所以本次共调查了300名学生;
跳绳的有300﹣120﹣60﹣90=30人,补图如下:
故答案为:300;
(2)根据题意得:
2000×40%=800(人),
答:选择“跑步”这种活动的学生约有800人;
(3)画树状图为:
共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,
所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率==.
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
题号
一
二
三
四
五
总分
得分
中学生综合素质评价成绩
中学生综合素质评价等级
A级
B级
C级
D级
湖南省澧县张公庙中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份湖南省澧县张公庙中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省扬州市田家炳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024年江苏省扬州市田家炳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省无锡市桃溪中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024年江苏省无锡市桃溪中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。