江苏省南京江北新区南京市浦口外国语学校2025届九年级数学第一学期开学考试模拟试题【含答案】
展开
这是一份江苏省南京江北新区南京市浦口外国语学校2025届九年级数学第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为( )
A.9B.12C.15D.18
2、(4分)在平面直角坐标系中,把点A(1,﹣5)向上平移3个单位后的坐标是( ).
A.(1,-2)B.(1,-8)C.(4,-5)D.(-2,-5)
3、(4分)若x<y,则下列式子不成立的是 ( )
A.x-1<y-1B.C.x+3<y+3D.-2x<-2y
4、(4分)如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是( )
A.-1B.C.D.2
5、(4分)下列各点中,不在反比例函数图象上的点是( )
A.B.C.D.
6、(4分)如果成立,那么实数a的取值范围是( )
A.B.C.D.
7、(4分)如图,已知一次函数的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程的解为;②关于x的方程的解为;③当时,;④当时,.其中正确的是( )
A.①②③B.①③④C.②③④D.①②④
8、(4分)一次函数y=-kx+k与反比例函数y=-(k≠0)在同一坐标系中的图象可能是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知:,则_______.
10、(4分)如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.
11、(4分)若二次根式有意义,则实数m的取值范围是_________.
12、(4分)如图,在平面直角坐标系xy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____.
13、(4分)如图,在菱形中,,过的中点作,垂足为点,与的延长线相交于点,则_______,_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)列方程解应用题
今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌. 企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元. 求A、B两厂生产的口罩单价分别是多少元?
15、(8分)(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为
A.平行四边形
B.菱形
C.矩形
D.正方形
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
求证:四边形AFF′D是菱形.
16、(8分)如图,在等腰梯形ABCD中,,,,.点Р从点B出发沿折线段以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点O向上作射线OKIBC,交折线段于点E.点P、O同时开始运动,为点Р与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒.
(1)点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点Р运动到AD上时,t为何值能使?
(3)t为何值时,四点P、Q、C、E成为一个平行四边形的顶点?
(4)能为直角三角形时t的取值范围________.(直接写出结果)
(注:备用图不够用可以另外画)
17、(10分)某校为了了解学生对语文、数学、英语、物理四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:
(1)求出这次调查的总人数;
(2)求出表中的值;
(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.
18、(10分)如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆.
(1)请你设计一种围法(篱笆必须用完),使矩形花园的面积为米.
(2)如何设计可以使得围成的矩形面积最大?最大面积是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.
20、(4分)如图 , 在 射 线 OA、OB 上 分 别 截 取 OA1、OB1, 使 OA1 OB1;连接 A1B1 , 在B1 A1、B1B 上分别截取 B1 A2、B1B2 ,使 B1 A2B1B2 ,连接 A2 B2;……依此类推,若A1B1O,则 A2018 B2018O =______________________.
21、(4分)如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.
22、(4分)已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.
23、(4分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)每分钟进水、出水各多少升?
25、(10分)如图,已知在中,对角线,,平分交的延长线于点,连接.
(1)求证:.
(2)设,连接交于点.画出图形,并求的长.
26、(12分)如图,在四边形中,,,,,,点从点出发,以的速度沿运动,点从点出发的同时,点从点出发,以的速度向点运动,当点到达点时,点也停止运动,设点、运动的时间为秒,从运动开始,当取何值时,?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,继而利用三角形面积解答即可.
【详解】
如图,过D作DE⊥AB于E,
∵AD平分∠BAC,∠C=90°,
∴DE=DC=3,
∵△ABD的面积等于18,
∴△ABD的面积=.
∴AB=12,
故选B.
本题考查了角平分线的性质,能根据角平分线性质得出DE=CD是解此题的关键,注意:角平分线上的点到这个角两边的距离相等.
2、A
【解析】
让横坐标不变,纵坐标加3可得到所求点的坐标.
【详解】
∵-5+3=-2,
∴平移后的坐标是(1,-2),
故选A.
本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.
3、D
【解析】
根据不等式的性质逐项分析即可.
【详解】
A. ∵ x<y,∴ x-1<y-1,故成立;
B. ∵ x<y,∴ ,故成立;
C. ∵ x<y,∴ x+3<y+3,故成立;
D. ∵ x<y,∴ -2x>-2y,故不成立;
故选D.
故选:D.
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
4、A
【解析】
过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90° 得到CH,连接HE,延长HE交AB的延长线于点J;通过证明△CKD≌△CHE (ASA),进而证明所构建的四边形CKJH是正方形,所以当点E与点J重合时,BE的值最小,再通过在Rt△CBK中已知的边角条件,即可求出答案.
【详解】
如图,过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90° 得到CH,连接HE,延长HE交AB的延长线于点J;
∵将线段CD绕点C逆时针旋转90° ,得到线段CE
∴∠DCE=∠KCH = 90°
∵∠ECH=∠KCH - ∠KCE,∠DCK =∠DCE-∠KCE
∴∠ECH =∠DCK
又∵CD= CE,CK = CH
∴在△CKD和△CHE中
∴△CKD≌△CHE (ASA)
∴∠CKD=∠H=90°,CH=CK
∴∠CKJ =∠KCH =∠H=90°
∴四边形CKJH是正方形
∴CH=HJ=KJ=C'K
∴点E在直线HJ上运动,当点E与点J重合时,BE的值最小
∵∠A= 30°
∴∠ABC=60°
在Rt△CBK中, BC= 2,
∴CK = BCsin60°=,BK=BCcs60° = 1
∴KJ = CK =
所以BJ = KJ-BK=;
BE的最小值为.
故选A.
本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.
5、A
【解析】
直接利用反比例函数图象上点的坐标特点进而得出答案.
【详解】
解:∵,
∴xy=12,
A.(3,−4),此时xy=3×(−4)=−12,符合题意;
B、(3,4),此时xy=3×4=12,不合题意;
C、(2,6),此时xy=2×6=12,不合题意;
D、(−2,−6),此时xy=−2×(−6)=12,不合题意;
故选:A.
此题主要考查了反比例函数图象上点的坐标特征,属于基础题.
6、B
【解析】
即
故选B.
7、A
【解析】
根据一次函数的性质及一次函数与一元一次方程的关系对各结论逐一判断即可得答案.
【详解】
∵一次函数的图象与x轴,y轴分别交于点(2,0),点(0,3),
∴x=2时,y=0,x=0时,y=3,
∴关于x的方程的解为;关于x的方程的解为,
∴①②正确,
由图象可知:x>2时,yAD=75,QC
相关试卷
这是一份2023-2024学年江苏省南京市江北新区浦口外国语学校七年级(上)月考数学试卷(10月份)(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京江北新区南京市浦口外国语学校2023-2024学年九上数学期末复习检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年江苏省南京江北新区南京市浦口外国语学校八上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了点P关于y轴的对称点的坐标是,已知5,则分式的值为等内容,欢迎下载使用。