江苏省南京市鼓楼区金陵汇文中学2025届九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )
A.方差B.平均数C.中位数D.众数
2、(4分)如图,在矩形纸片中,,,将纸片折叠,使点落在边上的点处,折痕为,再将沿向右折叠,点落在点处,与交于点,则的面积为( )
A.4B.6C.8D.10
3、(4分)在下列各式中,是分式的有( )
A.2个B.3个C.4个D.5个
4、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
A.a2=b2﹣c2B.c2=2a2C.a=bD.∠C=90°
5、(4分)直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( )
A.B.C.D.
6、(4分)如图,在中,是上一点,,,垂足为,是的中点,若,则的长度为( )
A.36B.18C.9D.5
7、(4分)如图,在中,,若有一动点从出发,沿匀速运动,则的长度与时间之间的关系用图像表示大致是()
A.B.
C.D.
8、(4分)下列任务中,适宜采用普查方式的是( )
A.调查某地的空气质量B.了解中学生每天的睡眠时间
C.调查某电视剧在本地区的收视率D.了解某一天本校因病缺课的学生数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简的结果是______
10、(4分)如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则的度数等于___________.
11、(4分)若分式在实数范围内有意义,则x的取值范围是_____.
12、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)
13、(4分)如图,△ABC中,D,E分别 是边AB,AC的中点.若DE=2,则BC= .
三、解答题(本大题共5个小题,共48分)
14、(12分)A、B、C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩
(单位:分)分别用了两种方式进行了统计,如表和图1:
(1)请将表和图1中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的200名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则A在扇形统计图中所占的圆心角是 度.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:4:2的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
15、(8分)如图,在矩形中,为对角线,点为边上一动点,连结,过点作,垂足为,连结.
(1)证明:;
(2)当点为的中点时,若,求的度数;
(3)当点运动到与点重合时,延长交于点,若,则 .
16、(8分)如图,在四边形中,且,四边形的对角线,相交于,点,分别是,的中点,求证:.
17、(10分)如图,在平面直角坐标系中,正方形两顶点为,,点D的坐标为,在上取点E,使得,连接,分别交,于M,N两点.
(1)求证:;
(2)求点E的坐标和线段所在直线的解析式;
(3)在M,N两点中任选一点求出它的坐标.
18、(10分)已知:,,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在四边形中,同一条边上的两个角称为邻角.如果一个四边形一条边上的邻角相等,且这条边的对边上的邻角也相等,那么这个四边形叫做C形.根据研究平行四边形及特殊四边形的方法,在下面的横线上至少写出两条关于C形的性质:_____.
20、(4分)一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.
21、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a>0的解集是_______
22、(4分)定义运算“”:a*b=a-ab,若,,a*b,则x的值为_________.
23、(4分)菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,
(1)请在所给的网格内画出以线段AB、BC为边的菱形,并求点D的坐标;
(2)求菱形ABCD的对角线AC的长.
25、(10分)如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
26、(12分)如图 ,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.
(1)求证:四边形AODE是菱形;
(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是_ .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.
故选.
2、C
【解析】
此题关键是求出CH的长,根据两次折叠后的图像中△GBH∽△ECH,得到对应线段成比例即可求解.
【详解】
由图可知经过两次折叠后,
GB=FG-BF=FG-(10-FG)=2
BF=EC=10-FG=4,
∵FG∥EC,
∴△GBH∽△ECH
∴
∵GB=2,EC=4,
∴CH=2BH,
∵BC=BH+CH=6,
∴CH=4,
∴S△ECH=EC×CH=×4×4=8.
故选C
此题主要考查矩形的折叠问题,解题的关键是熟知相似三角形的判定与性质.
3、B
【解析】
依据分式的定义即可判断.
【详解】
(x+3)÷(x-1)=,
,(x+3)÷(x-1)=,这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.
故式子中是分式的有3个.
故选:B.
此题考查了分式的定义,熟练掌握分式的定义是解题得到关键.
4、A
【解析】
根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
【详解】
解:设∠A、∠B、∠C分别为x、x、2x,
则x+x+2x=180°,
解得,x=45°,
∴∠A、∠B、∠C分别为45°、45°、90°,
∴a2+b2=c2,A错误,符合题意,
c2=2a2,B正确,不符合题意;
a=b,C正确,不符合题意;
∠C=90°,D正确,不符合题意;
故选:A.
本题考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
5、C
【解析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.
【详解】
设直角三角形的两条直角边分别为x、y,
斜边上的中线为d,
斜边长为2d,
由勾股定理得,,
直角三角形的面积为S,
,
则,
则,
,
这个三角形周长为:,
故选C.
【点睛】本题考查了勾股定理的应用,解题的关键是根据直角三角形的两条直角边长分别是a,b,斜边长为c,得出.
6、C
【解析】
根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.
【详解】
∵在△ACD中,∵AD=AC,AE⊥CD,
∴E为CD的中点,
又∵F是CB的中点,
∴EF为△BCD的中位线,
∴EF∥BD,EF=BD,
∵BD=18,
∴EF=9,
故选:C.
本题考查了三角形中位线定理和等腰三角形的性质.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.
7、D
【解析】
该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.
【详解】
解:如图,过点C作CD⊥AB于点D.
∵在△ABC中,AC=BC,
∴AD=BD.
①点P在边AC上时,s随t的增大而减小.故A、B错误;
②当点P在边BC上时,s随t的增大而增大;
③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;
④当点P在线段AD上时,s随t的增大而增大.故D正确.
故选:D.
本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.
8、D
【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
A. 调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;
B. 了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;
C. 调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;
D. 了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。
故选D.
此题考查全面调查与抽样调查,解题关键在于掌握调查方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣1
【解析】
分析:直接利用分式加减运算法则计算得出答案.
详解:==.
故答案为-1.
点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.
10、30°
【解析】
根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.
【详解】
∵CC′∥AB,
∴∠ACC′=∠CAB=75°,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,
∴∠CAC′=∠BAB′=30°.
故答案为:30°.
本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.
11、x≠1
【解析】
分式有意义的条件是分母不等于零.
【详解】
∵分式在实数范围内有意义,
∴x−1≠0,
解得:x≠1.
故答案为:x≠1.
此题考查分式有意义的条件,解题关键在于分母不等于零使得分式有意义.
12、<
【解析】
利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.
【详解】
解:由折线统计图得乙运动员的成绩波动较大,
所以S甲2<S乙2
故选<
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.
13、1.
【解析】
试题分析:根据题意画出图形,再由三角形的中位线定理进行解答即可.
试题解析:∵△ABC中,D、E分别是△ABC的边AB、AC的中点,DE=2
∴DE是△ABC的中位线,
∴BC=2DE=2×2=1.
考点:三角形中位线定理.
三、解答题(本大题共5个小题,共48分)
14、 (1)表格数据90,图见解析;(2)126° ;(3) B当选,理由见解析.
【解析】
试题分析:
(1)由条形统计图可知,A的口试成绩为90分,填入表中即可;
(2)由图2中A所占的百分比为35%可知,在图2中A所占的圆心角为:360°×35%;
(3)按:最后成绩=笔试成绩×40%+口试成绩×40%+得票成绩×20%分别计算出三人的成绩,再看谁的成绩最高,即可得到本题答案.
试题解析:
(1)由条形统计图可知:A的口试成绩为90分,填入表格如下:
(2)由图2可知,A所占的百分比为35%,
∴在图2中,A所占的圆心角为:360°×35%=126°;
(3)由题意可知:
A的最后得分为:85×40%+90×40%+200×35%×20%=84(分),
B的最后得分为:95×40%+80×40%+200×40%×20%=86(分),
C的最后得分为:90×40%+85×40%+200×25%×20%=80(分),
∵86>84>80,
∴根据成绩可以判定B当选.
15、(1)见解析;(2)53°;(3)
【解析】
(1)根据两角对应相等的两个三角形相似即可判断.
(2)只要证明△CPQ∽△APC,可得∠PQC=∠ACP即可解决问题.
(3)连接AF.与Rt△ADF≌Rt△AQF(HL),推出DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,证明△BCQ∽△CFQ,可得,推出,即,由CF∥AB,可得,推出,可得,推出x2+xy-y2=0,解得x=y或(舍弃),由此即可解决问题.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴∠ABP=90°,
∵BQ⊥AP,
∴∠BQP=∠ABP=90°,
∵∠BPQ=∠APB,
∴△ABP∽△BQP.
(2)解:∵△ABP∽△BQP,
∴
∴PB2=PQ•PA,
∵PB=PC,
∴PC2=PQ•PA,
∴
∵∠CPQ=∠APC,
∴△CPQ∽△APC,
∴∠PQC=∠ACP,
∵∠BAC=37°,
∴∠ACB=90°-37°=53°,
∴∠CQP=53°.
(3)解:连接AF.
∵∠D=∠AQF=90°,AF=AF,AD=AQ,
∴Rt△ADF≌Rt△AQF(HL),
∴DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,
∵∠BCF=∠CQB=∠CQF=90°,
∴∠BCQ+∠FCQ=90°,∠CBQ=90°,
∴∠FCQ=∠CBQ,
∴△BCQ∽△CFQ,
∴,
∴
∴,
∵CF∥AB,
∴,
∴
∴
∴x2+xy-y2=0,
∴ x=y或(舍弃),
∴
∴.
故答案为:.
本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
16、见解析
【解析】
据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.
【详解】
解:证明:连接BF、DE,如图所示:
∵,,
∴四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵E、F分别是OA、OC的中点,
∴OE=OA,OF=OC,
∴OE=OF,
∴四边形BFDE是平行四边形,
∴BE=DF.
本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
17、(1)详见解析;(2)点E的坐标是,;(3)点M的坐标为,或点N的坐标为.
【解析】
(1)由已知条件可得,有根据,,即可得证;
(2)由(1)中结论,可得,进而得出AE,得出点E坐标,设直线的解析式为,将点B坐标代入,即可得解;
(3)①设直线的解析式为,将点,点代入,即可得出直线解析式,联立直线CE和直线OB,即可得出点M的坐标;②设直线DE的解析式为,将点D ,点代入即可得出解析式,联立直线DE和直线OB,即可得出点N坐标..
【详解】
(1)∵正方形中,坐标系中
∴
又∵,正方形中
∴
(2)∵,
∴
∴
又∵,
∴点E的坐标是
设直线的解析式为
将点的对应值,代入求得
∴所求解析式为
(3)①求点M的坐标:
设直线的解析式为
由点,点得
解得
∴直线的解析式为
解方程组得
∴直线与直线的交点M的坐标为
②仿①的方法求得点N的坐标为
设直线DE的解析式为
由点D ,点,得
解得
∴直线DE的解析式为
联立方程组,得
解得
直线DE与直线OB的交点为N的坐标.
此题主要考查平面直角坐标系中三角形全等的判定和点坐标的求解,熟练掌握,即可解题.
18、3
【解析】
直接将代入求值比较麻烦,因此,可将原式化为含有的式子,再计算出 的值代入即可.
【详解】
解:∵,,∴,.
∴原式.
本题考查了乘法公式,灵活应用乘法公式将整式变形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、是轴对称图形;对角线相等;有一组对边相等;有一组对边平行.
【解析】
根据C形的定义,利用研究平行四边形及特殊四边形的方法,从边、角、对角线以及对称性这几个方面分析即可.
【详解】
根据C形的定义,称C形中一条边上相等的邻角为C形的底角,这条边叫做C形的底边,夹在两底边间的边叫做C形的腰.则C形的性质如下:
C形的两底边平行;C形的两腰相等;
C形中同一底上的两个底角相等;C形的对角互补;
C形的两条对角线相等;
C形是轴对称图形.
故答案为:C形的两底边平行;C形的两腰相等;
C形中同一底上的两个底角相等;C形的对角互补;
C形的两条对角线相等;
C形是轴对称图形
本题考查了平行四边形性质的应用,学生的阅读理解能力与知识的迁移能力,掌握研究平行四边形及特殊四边形的方法,并且能够灵活运用是解题的关键.
20、1
【解析】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.
【详解】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据题意可得:
5x-2(20-x)≥60,
解得:x≥14,
∵x为整数,
∴x的最小值为1.
故答案是:1.
考查了一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.
21、-3
kx+b>x+a>0的解集是一次函数y1=kx+b在y2=x+a的图象的上边部分,且在x轴上方部分,对应的x的取值范围,据此即可解答.
【详解】
解:观察图像可得:kx+b>x+a>0的解集是-3
22、±2
【解析】
先根据新定义得出一元二次方程,求出方程的解即可.
【详解】
解:由题意可得:x+1-(x+1)•x=-3,
-x2=-4,
解得:x=±2,
故答案为:±2
本题考查了解一元二次方程的应用,解此题的关键是能根据已知得出一元二次方程,题目比较新颖,难度适中.
23、2
【解析】
解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.
点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.
二、解答题(本大题共3个小题,共30分)
24、(1)D(-2,1);(2)3
【解析】
(1)根据菱形的四条边相等,可分别以点A,C为圆心,以AB长为半径画弧,两弧的交点即为点D的位置,根据所在象限和距坐标轴的距离得到点D的坐标即可;
(2)利用勾股定理易得菱形的一条对角线AC的长即可.
【详解】
解:(1)如图,菱形ABCD为所求图形,D(-2,1);
(2)AC==3.
主要考查了菱形四条边相等的判定,及勾股定理的运用,熟练掌握菱形的性质及勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
25、 (1)见解析;(2) 当O运动到OA=OC处,四边形AECF是矩形.理由见解析.
【解析】
(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;
(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.
【详解】
(1)当点O运动到AC中点时,四边形AECF是矩形;理由如下:
如图所示:
∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO;
(2)当O运动到OA=OC处,四边形AECF是矩形.理由如下:
∵OA=OC,
∴四边形AECF是平行四边形,
∵CF是∠BCA的外角平分线,
∴∠4=∠5,
又∵∠1=∠2,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴平行四边形AECF是矩形.
本题考查平行线的性质、矩形的判定和角平分线的性质,解题的关键是掌握平行线的性质、矩形的判定和角平分线的性质.
26、(1)证明见解析;(2)矩形
【解析】
(1)根据矩形的性质求出OA=OD,证出四边形AODE是平行四边形即可;
(2)根据菱形的性质求出∠AOD=90°,再证出四边形AODE是平行四边形即可.
【详解】
解:(1)∵矩形ABCD,
∴OA=OC=AC,OD=OB=BD,AC=BD,
∴OA=OD,
∵DE∥CA,AE∥BD,
∴四边形AODE是平行四边形,
∴四边形AODE是菱形.
(2)∵DE∥CA,AE∥BD,
∴四边形AODE是平行四边形,
∵菱形ABCD,
∴AC⊥BD,
∴∠AOD=90°,
∴平行四边形AODE是矩形.
故答案为:矩形.
本题主要考查对菱形的性质和判定,矩形的性质和判定,平行四边形的判定等知识点的理解和掌握,能推出四边形是平行四边形和证正出∠AOD=90°、OA=OD是解此题的关键.
题号
一
二
三
四
五
总分
得分
竞选人
A
B
C
笔试
85
95
90
口试
80
85
竞选人
A
B
C
笔试
85
95
90
口试
90
80
85
江苏省南京市金陵中学2025届九上数学开学调研试题【含答案】: 这是一份江苏省南京市金陵中学2025届九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省南京市二十九中学、汇文学校数学九上开学监测试题【含答案】: 这是一份2025届江苏省南京市二十九中学、汇文学校数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京市金陵汇文中学数学九上开学监测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市金陵汇文中学数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。