江苏省南京市浦口外国语学校2024-2025学年数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列方程中是二项方程的是( )
A.;B.=0;C.;D.=1.
2、(4分)已知数据:1,2,0,2,﹣5,则下列结论错误的是( )
A.平均数为0B.中位数为1C.众数为2D.方差为34
3、(4分)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是( )
ABCD
4、(4分)下列图形中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
5、(4分)函数的图象可能是( )
A.B.
C.D.
6、(4分)对四边形ABCD加条件,使之成为平行四边形,下面的添加不正确的是( )
A.AB=CD,AB∥CDB.AB∥CD,AD=BC
C.AB=CD,AD=BCD.AC与BD相互平分
7、(4分)下列条件中,不能判定一个四边形是平行四边形的是( )
A.两组对边分别平行B.一组对边平行且相等C.两组对角分别相等D.一组对边相等且一组对角相等
8、(4分)如图,在中,,,、、分别为、、的中点,连接、,则四边形的周长是( )
A.5B.7C.9D.11
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.
10、(4分)化简的结果是______.
11、(4分)如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.
12、(4分)如图,正方形ABCD的边长为10,点A的坐标为,点B在y轴上.若反比例函数的图像经过点C,则k的值为_____.
13、(4分)如图,延长正方形的边到,使,则________度.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,已知点,,,点与关于轴对称.
(1)写出点所在直线的函数解析式;
(2)连接,若线段能构成三角形,求的取值范围;
(3)若直线把四边形的面积分成相等的两部分,试求的值.
15、(8分)解不等式(组),并把解集在数轴上表示出来
(1)
(2)
16、(8分)如图,点在上,,,,,求的长.
17、(10分)某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
(1)每件童装降价多少元时,能更多让利于顾客并且商家平均每天能赢利1200元.
(2)要想平均每天赢利2000元,可能吗?请说明理由.
18、(10分)第一个不透明的布袋中装有除颜色外均相同的7个黑球、5个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,估计袋中红球的个数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知矩形的长和宽分别为4和3,、,,依次是矩形各边的中点,则四边形的周长等于______.
20、(4分)一次数学测验中,某小组七位同学的成绩分别是:90,85,90,1,90,85,1.则这七个数据的众数是_____.
21、(4分)若把分式中的x,y都扩大5倍,则分式的值____________.
22、(4分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为 cm.
23、(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形,点E为△BCD围成的区域(包括各边)内的一点,过点E作EM∥AB,交直线AC于点M,作EN∥AC,交直线AB于点N,则的最大值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是_____.
25、(10分)如图,点是ΔABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点、、、依次连结,得到四边形.
(1)求证:四边形是平行四边形;
(2)若为的中点,OM=5,∠OBC与∠OCB互余,求DG的长度.
26、(12分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:
(1)求本次抽样调查的人数;
(2)请补全两幅统计图;
(3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
【分析】二项方程:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.据此可以判断.
【详解】A. ,有2个未知数项,故不能选;
B. =0,没有非0常数项,故不能选;
C. ,符合要求,故能选;
D. =1,有2个未知数项,故不能选.
故选C
【点睛】本题考核知识点:二项方程.解题关键点:理解二项方程的定义.
2、D
【解析】
根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.
【详解】
A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;
B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;
C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;
D. ,故本选项错误,
所以选D
本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.
3、C
【解析】
试题分析:由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.
解:因为开始以正常速度匀速行驶,所以s随着t的增加而增加,随后由于故障修车,此时s不发生改变,再之后加快速度匀驶,s随着t的增加而增加,综上可得S先缓慢增加,再不变,再加速增加.
故选:C.
考点:函数的图象.
4、B
【解析】
首先根据把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,分别找出各选项所给图形中是轴对称图形的选项,进而排除不是轴对称
图形的选项;
然后再分析得到的是轴对称图形的选项,根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,找出它们当中是中心对称图形的选项即可
【详解】
A 是中心对称图形,不是轴对称图形,不符合题意
B.既是中心对称图形又是轴对称图形,符合题意;
C.既不是中心对称图形,也不是轴对称图形,不符合题意
D是轴对称图形,不是中心对称图形,不符合题意
故选B
此题主要考查中心对称图形和轴对称图形,根据定义对各选项进行分析判断是解决问题的关键;
5、C
【解析】
分x<0,x>0两段来分析.
【详解】
解:当x<0时,y=-|k|x,此时-|k|<0,∴y随x的增大而减小,又y>0,所以函数图像在第二象限,排除A,D;
当x>0时,y=|k|x,此时|k|>0,∴y随x的增大而增大,又y>0,所以函数图像在第一象限,排除B;故C正确.
故选:C.
本题主要考查一次函数的图像与性质,掌握基本性质是解题的关键.
6、B
【解析】
分析:根据平行四边形的判定定理即可得到结论.
详解:∵AB=CD,AB∥CD,
∴四边形ABCD是平行四边形,
∵AB∥CD,AD=BC, ∴四边形ABCD是平行四边形或梯形,
∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
∵AC与BD相互平分,
∴四边形ABCD是平行四边形,
故选B.
点睛:本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.
7、D
【解析】
根据平行四边形的判定方法逐一进行判断即可.
【详解】
A. 两组对边分别平行的四边形是平行四边形,故A选项正确,不符合题意;
B. 一组对边平行且相等的四边形是平行四边形,故B选项正确,不符合题意;
C. 两组对角分别相等的四边形是平行四边形,故C选项正确,不符合题意;
D. 一组对边相等且一组对角相等的四边形不一定是平行四边形,
如图,四边形ABCD为平行四边形,连接AC,作AE垂直BC于E,
在EB上截取EC'=EC,连接AC',则△AEC'≌△AEC,AC'=AC,
把△ACD绕点A顺时针旋转∠CAC'的度数,则AC与AC'重合,
显然四边形ABC'D'满足:AB=CD=C'D',∠B=∠D=∠D',而四边形ABC'D'并不是平行四边形,故D选项错误,符合题意,
故选D.
本题考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解本题的关键.
8、A
【解析】
先根据三角形中位线性质得DF=BC=1,DF∥BC,EF=AB=,EF∥AB,则可判断四边形DBEF为平行四边形,然后计算平行四边形的周长即可.
【详解】
解:∵D、E、F分别为AB、BC、AC中点,
∴DF=BC=1,DF∥BC,EF=AB=,EF∥AB,
∴四边形DBEF为平行四边形,
∴四边形DBEF的周长=2(DF+EF)=2×(1+)=1.
故选A.
本题考查三角形中位线定理和四边形的周长,解题的关键是掌握三角形中位线定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或3
【解析】
数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值
【详解】
解:连接AC和BD交于一点O,
四边形ABCD为菱形
垂直平分AC,
点P在线段AC的垂直平分线上,即BD上
在直角三角形APO中,由勾股定理得
如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;
如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3
故答案为:1或3
本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.
10、
【解析】
根据分式的减法和乘法可以解答本题.
【详解】
解:
,
故答案为:
本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.
11、2或.
【解析】
分别从当Q运动到E和B之间与当Q运动到E和C之间去分析, 根据平行四边形的性质, 可得方程, 继而可求得答案.
【详解】
解:E是BC的中点,
BE=CE=BC=12=6,
①当Q运动到E和C之间, 设运动时间为t, 则AP=t, DP=AD-AP=4-t, CQ=2t,EQ=CE-CQ=6-2t
t=6-2t,
解得: t=2;
②当Q运动到E和B之间,设运动时间为t,则AP=t, DP=AD-AP=4-t, CQ=2t,
EQ=CQ-CE=2t-6,
t=2t-6,
解得: t=6(舍),
③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,
则AP=4-(t-4)=8-t, EQ=2t-6,
8-t=2t-6,,
当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.
故答案为: 2或.
本题主要考查平行四边形的性质及解一元一次方程.
12、1
【解析】
过点作轴于,根据正方形的性质可得,,再根据同角的余角相等求出,然后利用“角角边”证明和全等,根据全等三角形对应边相等可得,,再求出,然后写出点的坐标,再把点的坐标代入反比例函数解析式计算即可求出的值.
【详解】
解:如图,过点作轴于,在正方形中,,,
,
,
,
点的坐标为,
,
,
,
在和中,
,
,
,,
,
点的坐标为,
反比例函数的图象过点,
,
故答案为1.
本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点的坐标是解题的关键.
13、22.5
【解析】
连接BD,根据等边对等角及正方形的性质即可求得∠E的度数.
【详解】
连接BD,如图所示:
则BD=AC
∵BE=AC
∴BE=BD
∴∠E=(180°-90°-45)°=22.5°.
故答案是:.
考查到正方形对角线相等的性质.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)时,线段能构成三角形;(3)当时,把四边形的面积分成相等的两部分.
【解析】
(1)根据题意可得点,可得的当横坐标为m时,纵坐标为-3m+22,因此可得点C的所在直线的解析式.
(2)首先利用待定系数法计算直线AB的解析式,再利用点C是否在直线上,来确定是否构成三角形,从而确定m的范围.
(3)首先计算D点坐标,设的中点为,过作轴于,轴于,进而确定E点的坐标,再计算DE所在直线的解析式,根据点C在直线DE上可求得m的值.
【详解】
解:(1)根据题意可得点,可得的当横坐标为m时,纵坐标为-3m+22,所以
(2)设所在直线的函数解析式为,将点,代入得
,解得,∴
当点在直线上时,线段不能构成三角形
将代入,得
解得,
∴时,线段能构成三角形;
(3)根据题意可得,
设的中点为,过作轴于,轴于,
根据三角形中位线性质可知,由三角形中线性质可知,当点在直线上时,把四边形的面积分成相等的两部分,
设直线的函数解析式为,将 ,代入,
得,解得,∴,
将代入,得
,解得,
∴当时,把四边形的面积分成相等的两部分.
本题主要考查一次函数的性质,本题难度系数较大,关键在于根据点在直线上来求参数的.
15、(1)x>﹣5,数轴见解析;(2)﹣2<x≤3,数轴见解析.
【解析】
(1)去分母;去括号;移项;合并同类项;化系数为1;再把不等式的解集表示在数轴上;依此即可求解.
(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
【详解】
(1),
去分母得:3(x+1)>2(x﹣1),
去括号得:3x+3>2x﹣2,
系数化为1得:x>﹣5,
数轴如图所示:
(2),
解不等式①得:x>﹣2,
解不等式②得:x≤3,
∴不等式组的解集是﹣2<x≤3,
在数轴上表示不等式组的解集为:
本题考查解一元一次不等式及一元一次不等式组,解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.
16、.
【解析】
首先证明,得到,设,于是得到,.在中,利用勾股定理可得结果.
【详解】
解:∵
∴∴∠ACE+∠BCF=∠CAE+∠ACE=90°,
∴∠CAE=∠FBC,
∴.
设.
∴.
∴,.
在中,可得.
解得,,(舍)
所以的长为.
本题考查相似三角形的判定与性质、勾股定理.利用三角形相似求出相似比是解决问题的关键.
17、(1)每件童装降价20元时,能更多让利于顾客并且商家平均每天能赢利1200元;(2)不可能,理由详见解析.
【解析】
(1)设每件童装降价x元,则销售量为(20+2x)件,根据总利润=每件利润 销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论
(2)设每件童装降价元,则销售量为(20+2y)件,根据总利润=每件利润 销售数量,即可得出关于y的一元二次方程,由根的判别式A<0可得出原方程无解,进而即可得出不可能每天盈利2000元.
【详解】
(1)设每件童装降价元时,能更多让利于顾客并且商家平均每天能赢利1200元,得:
∴,
∵要更多让利于顾客
∴更符合题意
答:每件童装降价20元时,能更多让利于顾客并且商家平均每天能赢利1200元.
(2)不可能;
设每件桶童装降价元,则销售量为件,根据题意得:
整理得:
∵
∴该方程无实数解
∴不可能每天盈利2000元.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
18、估计袋中红球8个.
【解析】
根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.
【详解】
解:由题意可得:摸到黑球和白球的频率之和为:,
总的球数为:,
红球有:(个.
答:估计袋中红球8个.
此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
直接利用矩形的性质结合勾股定理得出EF,FG,EH,HG的长即可得出答案.
【详解】
∵矩形ABCD的长和宽分别为4和3,E、F、G、H依次是矩形ABCD各边的中点,
∴AE=BE=CG=DG=1.5,AH=DH=BF=FC=2,
∴EH=EF=HG=GF=,
∴四边形EFGH的周长等于4×2.5=1
故答案为1.
此题主要考查了中点四边形以及勾股定理,正确应用勾股定理是解题关键.
20、2
【解析】分析:众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此即可求解.
详解:依题意得2出现了3次,次数最多,
故这组数据的众数是2.
故答案为2
点睛:此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.
21、扩大5倍
【解析】
【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.
【详解】把分式中的x,y都扩大5倍得:
=,
即分式的值扩大5倍,
故答案为:扩大5倍.
【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.
22、4.
【解析】
试题解析:∵四边形ABCD是矩形,
∴OA=AC,OB=BD,BD=AC=8cm,
∴OA=OB=4cm,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=4cm.
考点:矩形的性质.
23、
【解析】
作辅助线,构建30度的直角三角形将转化为NH,将,即:过A点作AM∥BC,过作交的延长线于点,,由△BCD围成的区域(包括各边)内的一点到直线AP的最大值时E在D点时,通过直角三角形性质和勾股定理求出DH’即可得到结论.
【详解】
解:过A点作AP∥BC,过作交的延长线于点,
,,
四边形是平行四边形,
设,,
∵∠ACB=90°,∠CAB=60°,
∴∠CAM=90°,∠NAH=30°,
中,,
∵NE∥AC,NH∥AC,
∴E、N、H在同一直线上,
,
由图可知:△BCD围成的区域(包括各边)内的一点到直线AM距离最大的点在D点,
过D点作,垂足为.
当在点时,=取最大值.
∵∠ACB=90°,∠A=60°,AB=6,,
∴AC=3,AB=,四边形ACGH’是矩形,
∴,
∵△BCD为等边三角形,,
∴=,
∴,
∴的最大值为,
故答案为.
本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度.解题关键是根据在直角三角形中,30°角所对的边等于斜边的一半对进行转化,使得最大值问题转化为点到直线的距离解答.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
过P作PH⊥DC于H,交AB于G,由正方形的性质得到AD=AB=BC=DC=2;∠D=∠C=90°;再根据折叠的性质有PA=PB=2,∠FPA=∠EPB=90°,可判断△PAB为等边三角形,利用等边三角形的性质得到∠APB=60°,,于是∠EPF=10°,PH=HG﹣PG=2﹣,得∠HEP=30°,然后根据含30°的直角三角形三边可求出HE,得到EF,最后利用三角形的面积公式计算即可.
【详解】
解:过P作PH⊥DC于H,交AB于G,如图,
则PG⊥AB,
∵四边形ABCD为正方形,
∴AD=AB=BC=DC=2;∠D=∠C=90°,
又∵将正方形ABCD折叠,使点C与点D重合于形内点P处,
∴PA=PB=2,∠FPA=∠EPB=90°,
∴△PAB为等边三角形,
∴∠APB=60°,PG=AB=,
∴∠EPF=10°,PH=HG﹣PG=2﹣,
∴∠HEP=30°,
∴HE=PH=(2﹣)=2﹣3,
∴EF=2HE=4﹣6,
∴△EPF的面积=FE•PH=(2﹣)(4﹣6)
=7﹣1.
故答案为7﹣1.
本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.
25、(1)见解析;(2)1.
【解析】
(1)根据三角形的中位线性质求出DG∥BC,EF∥BC,DG=BC,EF=BC,求出DG∥EF,DG=EF,根据平行四边形的判定得出即可;
(2)求出∠BOC=90°,根据直角三角形的斜边上中线性质得出EF=2OM,即可求出答案.
【详解】
(1)证明: ∵点D、E、F、G分别是AB、OB、OC、AC的中点,
∴DG∥BC,EF∥BC,DG=BC,EF=BC,
∴DG∥EF,DG=EF,
∴四边形DEFG是平行四边形;
(2)解:由 (1)知:四边形DEFG是平行四边形,
∴DG=EF.
∵ ∠OBC与∠OCB互余,
∴∠OBC+∠OCB=90°,
∴∠BOC=90°.
∵M为EF的中点,OM=5,
∴OM=EF,即EF=2OM=2×5=1,
∴DG=1.
本题考查三角形的中位线性质,平行四边形的判定和性质,直角三角形斜边上中线性质等知识点,能熟练地运用定理进行推理是解题的关键.
26、(1)100(人);(2)详见解析;(3)1050人.
【解析】
(1)用A类的人数除以它所占的百分比,即可得本次抽样调查的人数;
(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;
(3)用3000乘以样本中观看“中国诗词大会”节目较喜欢的学生人数所占的百分比,即可解答.
【详解】
解:(1)本次抽样调查的人数为:20÷20%=100(人);
(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),
D类所占的百分比为:26÷100×100%=26%,
B类所占的百分比为:35÷100×100%=35%,
如图所示:
(3)3000×35%=1050(人).
观看“中国诗词大会”节目较喜欢的学生人数为1050人.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.
题号
一
二
三
四
五
总分
得分
批阅人
江苏省南京市扬子第一中学2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份江苏省南京市扬子第一中学2024-2025学年九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】: 这是一份江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年重庆市外国语学校九上数学开学检测模拟试题【含答案】: 这是一份2024-2025学年重庆市外国语学校九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。