江苏省南京玄武区2025届数学九上开学联考模拟试题【含答案】
展开这是一份江苏省南京玄武区2025届数学九上开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于一次函数,如果随的增大而减小,那么反比例函数满足( )
A.当时,B.在每个象限内,随的增大而减小
C.图像分布在第一、三象限D.图像分布在第二、四象限
2、(4分)我校是教育部的全国青少年校园足球“满天星”训练基地,旨在“踢出快乐,拼出精彩”,如图,校园足球图片正中的黑色正五边形的内角和是( )
A.B.C.D.
3、(4分)已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1B.3C.4D.5
4、(4分)如果代数式能分解成形式,那么k的值为( )
A.9B.﹣18C.±9D.±18
5、(4分)平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为( )
A.6cmB.3cmC.9cmD.12cm
6、(4分)如图,在R△ABC中,CD、CE分别是斜边AB上的中线和高,CD=8,CE=5,则Rt△ABC的面积是( )
A.80B.60C.40D.20
7、(4分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )
A.方差B.平均数C.中位数D.众数
8、(4分)矩形、菱形和正方形的对角线都具有的性质是( )
A.互相平分B.互相垂直C.相等D.任何一条对角线平分一组对角
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.
10、(4分)化简b 0 _______.
11、(4分)一次函数的图象经过第二、三、四象限,则的取值范围是__________.
12、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
13、(4分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数图象经过和两点
(1)求此一次函数的解析式;
(2)若点在函数图象上,求的值.
15、(8分)已知:
(1)在直角坐标系中画出△ABC;
(2)求△ABC的面积;
(3)设点P在x轴上,且△ABP与△ABC的面积相等,请直接写出点P的坐标.
16、(8分)如图,,是上的一点,且,.
求证:≌
17、(10分)如图,在平面直角坐标系中,矩形的顶点坐标为,点在边上从点运动到点,以为边作正方形,连,在点运动过程中,请探究以下问题:
(1)的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若为等腰三角形,求此时正方形的边长.
18、(10分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:) 绘制成不完整的频数分布表和频数分布直方图.
请根据图表中所提供的信息,完成下列问题
(1)表中= ,= ;
(2)请把频数分布直方图补充完整;
(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若反比例函数y=的图象在二、四象限,则常数a的值可以是_____.(写出一个即可)
20、(4分)函数的自变量的取值范围是______.
21、(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为1,5,1,1.则最大的正方形E的面积是___.
22、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
23、(4分)已知函数,当时,函数值的取值范围是_____________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形ABCD中,对角线AC,BD相较于点O,的角平分线BF交CD于点E,交AC于点F
求证:;
若,求AB的值
25、(10分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
26、(12分)在矩形中,点在上,,,垂足为.
(1)求证:;
(2)若,且,求.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
一次函数,y随着x的增大而减小,则m<0,可得出反比例函数在第二、四象限,在每个象限内y随x的增大而增大.
【详解】
解:∵一次函数,y随着x的增大而减小,
∴m<0,
∴反比例函数的图象在二、四象限;且在每一象限y随x的增大而增大.
∴A、由于m<0,图象在二、四象限,所以x、y异号,错误;
B、错误;
C、错误;
D、正确.
故选:D.
本题考查了一次函数和反比例函数的图象和性质,注意和的图象与式子中的符号之间的关系.
2、C
【解析】
根据多边形内角和公式(n-2)×180°即可求出结果.
【详解】
解:黑色正五边形的内角和为:(5-2)×180°=540°,
故选:C.
本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.
3、D
【解析】
根据二次函数的图象与性质即可求出答案.
【详解】
解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
4、B
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
解:∵=(x-9)2,
∴k=-18,
故选:B.
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
5、B
【解析】
设平行四边形较短的边长为x,根据平行四边形的性质和已知条件列出方程求解即可
【详解】
解:设平行四边形较短的边长为x,
∵相邻两边长的比为3:1,
∴相邻两边长分别为3x、x,
∴2x+6x=24,
即x=3cm,
故选B.
本题主要考查平行四边形的性质,根据性质,设出未知数,列出方程是解题的关键.
6、C
【解析】
根据直角三角形斜边上中线的性质求出,根据三角形的面积公式求出即可.
【详解】
解:在中,是斜边上的中线,,
,
,
的面积,
故选:.
本题考查了直角三角形斜边上中线的性质和三角形的面积,能根据直角三角形斜边上中线的性质求出的长是解此题的关键.
7、D
【解析】
解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.
故选.
8、A
【解析】
因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.
【详解】
解:根据平行四边形、矩形、菱形、正方形的对角线相互平分的性质,可知选A.
故选:A.
此题综合考查了平行四边形、矩形、菱形、正方形的对角线的性质,熟练掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、14或16.
【解析】
求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)若4为腰长,6为底边长,
由于6−4<4<6+4,即符合三角形的两边之和大于第三边.
所以这个三角形的周长为6+4+4=14.
(2)若6为腰长,4为底边长,
由于6−6<4<6+6,即符合三角形的两边之和大于第三边.
所以这个三角形的周长为6+6+4=16.
故等腰三角形的周长为:14或16.
故答案为:14或16.
此题考查三角形三边关系,等腰三角形的性质,解题关键在于分情况讨论
10、
【解析】
式子的分子和分母都乘以 即可得出 ,根据b是负数去掉绝对值符号即可.
【详解】
∵b<0,
∴=.
故答案为: .
此题考查分母有理化,解题关键在于掌握运算法则
11、m<3
【解析】
根据一次函数y=(m-3)x-2的图象经过二、三、四象限判断出m的取值范围即可.
【详解】
∵一次函数y=(m-3)x-2的图象经过二、三、四象限,
∴m-3<0,
∴m<3,
故答案为:m<3.
此题考查一次函数的图象与系数的关系,解题关键在于掌握一次函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限.
12、∠B=∠1或
【解析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
【详解】
此题答案不唯一,如∠B=∠1或.
∵∠B=∠1,∠A=∠A,
∴△ADE∽△ABC;
∵,∠A=∠A,
∴△ADE∽△ABC;
故答案为∠B=∠1或
此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.
13、1.
【解析】
解:设售价至少应定为x元/千克,
依题可得方程x(1-5%)×80≥760,
解得x≥1
故答案为1.
本题考查一元一次不等式的应用.
三、解答题(本大题共5个小题,共48分)
14、(1)(2)
【解析】
(1)用待定系数法,设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出答案.
(2)将点(m,2)代入可得关于m的方程,解出即可.
【详解】
解:(1)设一次函数的解析式为,
则有,
解得:,
一次函数的解析式为;
(2)点在一次函数图象上
,
.
本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法求一次函数解析式.
15、(1)详见解析;(2)面积为4;(3)(-6,0).(10,0);
【解析】
(1)确定出点、、的位置,连接、、即可;
(2)过点向、轴作垂线,垂足为、,的面积=四边形的面积−的面积−的面积−的面积;
(3)点在轴上时,由的面积,求得:,故此点的坐标为或.
【详解】
(1)如图所示:
(2)过点向、轴作垂线,垂足为、,
四边形的面积,的面积,的面积,的面积,
的面积=四边形的面积−的面积−的面积−的面积.
(3)点在轴上,
,即:,解得:,
所以点的坐标为或.
本题主要考查的是点的坐标与图形的性质,明确的面积=四边形的面积−的面积−的面积−的面积是解题的关键.
16、证明见解析.
【解析】
此题比较简单,根据已知条件,利用直角三角形的HL可以证明题目结论.
【详解】
证明:∵∠1=∠2
∴DE=CE
∵∠A=∠B=90°
∴AE=BC
∴Rt△ADE≌Rt△BEC(HL)
此题考查直角三角形全等的判定,解题关键在于掌握判定定理
17、(1)不变,;(2)正方形ADEF的边长为或或.
【解析】
(1)作交延长线于,证明,从而可得 ,继而根据三角形面积公式进行计算即可;
(2)分、、三种情况分别讨论求解即可.
【详解】
(1)作交延长线于,
∵正方形中,,,
∴,
∵,∴,
∴,
∵矩形中,,
∴,∴,
∴,
∴;
(2)①当时,作 ,
∵正方形中,,
∴,∴,
同(1)可得≌,
∴, ∴,
∴;
②当时,,
∵正方形中,,,
∴,∴≌,
∴,
∵矩形中,,
∴ ;
③当时,作,
同理得, ,
∴;
综上,正方形ADEF的边长为或或.
本题考查了矩形的性质,正方形的性质,等腰三角形的性质,全等三角形的判定与性质等,熟练掌握和灵活运用相关知识是解题的关键.注意分类讨论思想的运用.
18、(1)8,20 (2)见解析 (3)330人
【解析】
(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;
(2)根据(1)中b的值可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.
【详解】
(1)由频数分布直方图可知,a=8,
b=50-8-12-10=20,
故答案为:8,20;
(2)由(1)知,b=20,
补全的频数分布直方图如图所示;
(3)550×=330(人),
答:该年级学生立定跳远成绩优秀的学生有330人.
本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2(答案不唯一).
【解析】
由反比例函数y=的图象在二、四象限,可知a-3<0,据此可求出a的取值范围.
【详解】
∵反比例函数y=的图象在二、四象限,
∴a-3<0,
∴a<3,
∴a可以取2.
故答案为2.
本题考查了反比例函数的图像与性质,对于反比例函数(k是常数,k≠0),当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
20、x>
【解析】
根据分式、二次根式有意义的条件,确定x的范围即可.
【详解】
依题意有2x-3>2,
解得x>.
故该函数的自变量的取值范围是x>.
故答案为:x>.
本题考查的知识点为:分式有意义,分母不为2.二次根式有意义,被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+23中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-2.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
21、2
【解析】
试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S1,S1+S1=S3,
∵正方形A、B、C、D的面积分别为1,5,1,1,
∵最大的正方形E的面积S3=S1+S1=1+5+1+1=2.
22、①②④.
【解析】
①易证△ABD∽△ADF,结论正确;
②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;
③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;
④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.
【详解】
解:如图,在线段DE上取点F,使AF=AE,连接AF,
则∠AFE=∠AEF,
∵AB=AC,
∴∠B=∠C,
∵∠ADE=∠B=a,
∴∠C=∠ADE=a,
∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,
∴∠DAF=∠CDE,
∵∠ADE+∠CDE=∠B+∠BAD,
∴∠CDE=∠BAD,
∴∠DAF=∠BAD,
∴△ABD∽△ADF
∴,即AD2=AB•AF
∴AD2=AB•AE,
故①正确;
由①可知:,
当AD⊥BC时,由勾股定理可得:
,
∴,
∴,即,故②正确;
如图2,作AH⊥BC于H,
∵AB=AC=5,
∴BH=CH=BC=4,
∴,
∵AD=AD′=,
∴DH=D′H=,
∴BD=3或BD′=5,CD=5或CD′=3,
∵∠B=∠C
∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形
故③不正确;
如图3,AD⊥BC,DE⊥AC,
∴∠ADE+∠DAE=∠C+∠DAE=90°,
∴∠ADE=∠C=∠B,
∴BD=4;
如图4,DE⊥BC于D,AH⊥BC于H,
∵∠ADE=∠C,
∴∠ADH=∠CAH,
∴△ADH∽△CAH,
∴,即,
∴DH=,
∴BD=BH+DH=4+==6.1,
故④正确;
综上所述,正确的结论为:①②④;
故答案为:①②④.
本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.
23、
【解析】
依据k的值得到一次函数的增减性,然后结合自变量的取值范围,得到函数值的取值范围即可.
【详解】
∵函数y=−3x+7中,k=−3<0,
∴y随着x的增大而减小,
当x=2时,y=−3×2+7=1,
∴当x>2时,y<1,
故答案为:y<1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2).
【解析】
根据正方形的性质得到,由角平分线的定义得到,求得,于是得到结论;
如图作交BD于点首先证明是等腰直角三角形,推出,求出OB即可解决问题.
【详解】
证明:,BD是正方形的对角线,
,
平分,
;
,,
,
;
解解:如图,作交BD于点H.
四边形ABCD是正方形,
,,
,
,,
,
,,
平分,
,
,
,
.
本题考查正方形的性质,角平分线的定义,勾股定理,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
25、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.
【解析】
(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;
(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.
【详解】
(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:
,
解得:.
经检验,是原方程的解.
所以,甲种图书售价为每本元,
答:甲种图书售价每本28元,乙种图书售价每本20元.
(2)设甲种图书进货本,总利润元,则
.
又∵,
解得:.
∵随的增大而增大,
∴当最大时最大,
∴当本时最大,
此时,乙种图书进货本数为(本).
答:甲种图书进货533本,乙种图书进货667本时利润最大.
本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.
26、(1)见解析;(2)AD=.
【解析】
(1)利用“AAS”证明△ADF≌△EAB即可得;
(2)证明△AFD是等腰直角三角形,得出AF=DF=AB=4,利用勾股定理即可求出AD.
【详解】
(1)证明:在矩形ABCD中,AD∥BC,
∴∠AEB=∠DAF,
又∵DF⊥AE,
∴∠DFA=90°,
∴∠DFA=∠B,
在△ADF和△EAB中,,
∴△ADF≌△EAB(AAS),
∴DF=AB;
(2)解:∵∠FEC=135°,
∴∠AEB=180°−∠FEC=45°,
∴∠DAF=∠AEB=45°,
∴△AFD是等腰直角三角形,
∴AF=DF=AB=4,
∴AD=.
本题主要考查矩形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质及勾股定理;熟练掌握矩形的性质,证明三角形全等是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省南京玄武区2024年九年级数学第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省南京市建邺区数学九上开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省南京建邺区六校联考数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。