![江苏省南通市崇川区八一中学2024-2025学年九上数学开学检测模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16283922/0-1729692941869/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省南通市崇川区八一中学2024-2025学年九上数学开学检测模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16283922/0-1729692941926/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省南通市崇川区八一中学2024-2025学年九上数学开学检测模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16283922/0-1729692941961/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省南通市崇川区八一中学2024-2025学年九上数学开学检测模拟试题【含答案】
展开这是一份江苏省南通市崇川区八一中学2024-2025学年九上数学开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一个多边形的每一个外角都是40°,则这个多边形是( )
A.七边形B.八边形C.九边形D.十边形
2、(4分)如图,在△ABC中,∠B=90°,以A为圆心,AE长为半径画弧,分别交AB、AC于F、E两点;分别以点E和点F为圆心,大于EF且相等的长为半径画弧,两弧相交于点G,作射线AG,交BC于点D,若BD=,AC长是分式方程的解,则△ACD的面积是( )
A.B.C.4D.3
3、(4分)如图,正方形的边长为,动点从点出发,沿的路径以每秒的速度运动(点不与点、点重合),设点运动时间为秒,四边形的面积为,则下列图像能大致反映与的函数关系是( )
A. B.
C. D.
4、(4分)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cmB.15cmC.10cmD.20cm
5、(4分)如图,将矩形纸片按如下步骤操作:将纸片对折得折痕,折痕与边交于点,与边交于点;将矩形与矩形分别沿折痕和折叠,使点,点都与点重合,展开纸片,恰好满足.则下列结论中,正确的有( )
①;②;③;④.
A.4个B.3个C.2个D.1个
6、(4分)下列函数中,图像不经过第二象限的是( )
A.B.C.D.
7、(4分)如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是( )
A.AD=BCB.AC=BD
C.AB∥CDD.∠BAC=∠DCA
8、(4分)不等式5x﹣2>3(x+1)的最小整数解为( )
A.3B.2C.1D.﹣2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当x=_____时,分式的值为零.
10、(4分)计算:_________
11、(4分)如图,在平面直角坐标系中,长方形的顶点在坐标原点,顶点分别在轴,轴的正半轴上,,为边的中点,是边上的一个动点,当的周长最小时,点的坐标为_________.
12、(4分)如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.
13、(4分)用换元法解方程时,如果设,那么得到关于的整式方程为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD中,∠A=∠ABC=90°,E是边CD的中点,连接BE并延长与AD的延长线相交于点F,连接CF.四边形BDFC是平行四边形吗?证明你的结论.
15、(8分)有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A点望湖中小岛M,测得∠MAN=30°,航行100米到达B点时,测得∠MBN=45°,你能算出A点与湖中小岛M的距离吗?
16、(8分)(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?
17、(10分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:
现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:
(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;
(2)补全图中的条形统计图;
(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.
18、(10分)如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,.
(1)画出将向上平移2个单位长度,再向左平移5个单位长度后得到的;
(2)画出将绕点按顺时针方向旋转90°得到的;
(3)在轴上存在一点,满足点到点与点的距离之和最小,请直接写出点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一次函数的图象交轴于点,交轴于点,点在线段上,过点分别作轴于点,轴于点.若矩形的面积为,则点的坐标为______.
20、(4分)气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.
21、(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=_____.
22、(4分)如图,点O是矩形ABCD的对角线AC的中点,M是AD的中点,若OM=3,BC=8,则OB的长为 ________。
23、(4分)已知P1(1,y1),P2(2,y2)是正比例函数的图象上的两点,则y1 y2(填“>”或“<”或“=”).
二、解答题(本大题共3个小题,共30分)
24、(8分)某工厂为了解甲、乙两个部门员工的生产技能情况,从甲、乙两个部门各随机抽取20名员工,进行生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
(说明:成绩80分及以上为优秀,70-79分为良好,60-69分为合格,60分以下为不合格)
(1)请填完整表格:
(2)从样本数据可以推断出 部门员工的生产技能水平较高,请说明理由.(至少从两个不同的角度说明推断的合理性).
25、(10分)如图,已知直线与直线相交于点.
(1)求、的值;
(2)请结合图象直接写出不等式的解集.
26、(12分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
(1)如图1,猜想∠QEP= °;
(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.
【详解】
360÷40=9,即这个多边形的边数是9,
故选C.
本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
2、A
【解析】
利用角平分线的性质定理证明DB=DH=,再根据三角形的面积公式计算即可
【详解】
如图,作DH⊥AC于H,
∵
∴5(x-2)=3x
∴x=5
经检验:x=5是分式方程的解
∵AC长是分式方程的解
∴AC=5
∵∠B=90°
∴DB⊥AB,DH⊥AC
∵AD平分∠BAC,
∴DH=DB=
S=
故选A
此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线
3、D
【解析】
根据点P的路线,找到临界点为D点,则分段讨论P在边AD、边DC上运动时的y与x的函数关系式.
【详解】
当0≤x≤4时,点P在AD边上运动,
则y=(x+4)4=2x+8.
当4≤x≤8时,点P在DC边上运动,
则y═(8-x+4)4=-2x+24,
根据函数关系式,可知D正确
故选:D.
本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结合思想.
4、D
【解析】
根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长;设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,可求出r;接下来根据圆锥的母线长、底面圆的半径以及圆锥的高构成直角三角形,利用勾股定理可计算出圆锥的高.
【详解】
过O作OE⊥AB于E,如图所示.
∵OA=OB=60cm,∠AOB=120°,
∴∠A=∠B=30°,
∴OE= OA=30cm,
∴弧CD的长==20π,
设圆锥的底面圆的半径为r,则2πr=20π,
解得r=10,
∴由勾股定理可得圆锥的高为:cm.
故选D.
本题考查了勾股定理,扇形的弧长公式,圆锥的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
5、B
【解析】
根据矩形的性质及等边三角形的性质即可判断.
【详解】
由对称性可得,故①正确;,易得四边形为菱形,∴,由对称性可得,∴,,均为等边三角形,∴,故③正确;∵,∴.
又∵,∴,故②正确;设,则,则,,∴,,,故④错误,故选B.
本题考查了四边形综合题,图形的翻折变化.该类题型一定要明确翻折前后对应的线段长以及角度大小.往往会隐含一些边角关系.需要熟练掌握各类四边形的性质与判定,以及特殊三角形的边角关系等.
6、B
【解析】
根据一次函数的性质,逐个进行判断,即可得出结论.
【详解】
各选项分析得:
A. k=3>0,b=5>0,图象经过第一、二、三象限;
B. k=3>0,b=−5<0,图象经过第一、三、四象限;
C. k=−3<0,b=5>0,图象经过第一、二、四象限;
D. k=−3<0,b=−5<0,图象经过第二、三、四象限.
故选B.
此题考查一次函数的性质,解题关键在于掌握一次函数的性质.
7、B
【解析】
解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;
B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;
C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;
D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.
故选B.
8、A
【解析】
先求出不等式的解集,在取值范围内可以找到最小整数解.
【详解】
5x﹣2>3(x+1),
去括号得:5x﹣2>3x+3,
移项、合并同类项得:2x>5
系数化为1得:x>,
∴不等式5x﹣2>3(x+1)的最小整数解是3;
故选:A.
本题考查了一元一次不等式的整数解.解答此题要先求出不等式的解集,再确定最小整数解.解不等式要用到不等式的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
要使分式的值为0,则必须分式的分子为0,分母不能为0,进而计算x的值.
【详解】
解:由题意得,x﹣1=0且x+1≠0,
解得x=1.
故答案为:1.
本题主要考查分式为0的情况,关键在于分式的分母不能为0.
10、1
【解析】
根据同分母的分式相加减的法则计算即可.
【详解】
原式=.
故答案为:1.
本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.
11、 (1,0)
【解析】
作点D关于x轴的对称点D′,连接CD′与x轴交于点E,用待定系数法,求出直线CD′的解析式,然后求得与x轴的交点坐标即可.
【详解】
作点D关于x轴的对称点D′,连接CD′与x轴交于点E,
∵OB=4,OA=3,D是OB的中点,
∴OD=2,则D的坐标是(0,2),C的坐标是(3,4),
∴D′的坐标是(0,-2),
设直线CD′的解析式是:y=kx+b(k≠0),
则
解得:,
则直线的解析式是:y=2x-2,
在解析式中,令y=0,得到2x-2=0,
解得x=1,
则E的坐标为(1,0),
故答案为:(1,0).
本题考查了路线最短问题,以及待定系数法求一次函数的解析式,正确作出E的位置是解题的关键.
12、6
【解析】
作PD⊥BC,所以,设P(x,y). 由,得平行四边形面积=BC•PD=xy.
【详解】
作PD⊥BC,
所以,设P(x,y).
由,
得平行四边形面积=BC•PD=xy=6.
故答案为:6
本题考核知识点:反比例函数意义. 解题关键点:熟记反比例函数的意义.
13、
【解析】
将分式方程中的换,则=,代入后去分母即可得到结果.
【详解】
解:根据题意得:,
去分母得:.
故答案为:.
此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.
三、解答题(本大题共5个小题,共48分)
14、四边形BDFC是平行四边形.理由见解析。
【解析】
根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠BCE=∠FDE,然后利用“角角边”证明△BCE和△FDE全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可
【详解】
四边形BDFC是平行四边形.理由如下:
∵∠A=∠ABC=90°,
∴∠A+∠ABC=180°,
∴BC∥AF,
∴∠BCE=∠FDE,
∵E是CD中点,
∴CE=DE,
在△BCE和△FDE中,
∵∠BCE=∠FDE,CE=DE,∠CEB=∠DEF,
∴△BCE≌△FDE(ASA) ,
∴BE=EF,
∵CE=DE,BE=EF,
∴四边形BDFC为平行四边形.
本题考查了平行四边形的判定,平行线的判定、全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.
15、A点与湖中小岛M的距离为100+100米;
【解析】
作MC⊥AN于点C,设AM=x米,根据∠MAN=30°表示出MC= m,根据∠MBN=45°,表示出BC=MC=m然后根据在Rt△AMC中有AM =AC+MC列出法方程求解即可.
【详解】
作MC⊥AN于点C,
设AM=x米,
∵∠MAN=30°,
∴MC=m,
∵∠MBN=45°,
∴BC=MC=m
在Rt△AMC中,
AM=AC+MC,
即:x=( +100) +() ,
解得:x=100+100 米,
答:A点与湖中小岛M的距离为100+100米。
此题考查勾股定理的应用,解题关键在于作辅助线
16、解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得
y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000。
(2)依题意,得,
解得10≤x≤。
∵x为整数,∴x=10,11,12。∴商场有三种方案可供选择:
方案1:购空调10台,购彩电20台;
方案2:购空调11台,购彩电19台;
方案3:购空调12台,购彩电18台。
(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大。
∴当x=12时,y有最大值,y最大=300×12+12000=15600元.
故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元。
【解析】(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x)。
(2)根据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满足题意的x的正整数值即可。
(3)利用y与x的函数关系式y=150x+6000的增减性来选择哪种方案获利最大,并求此时的最大利润即可。
考点:一次函数和一元一次不等式组的应用,由实际问题列函数关系式,一次函数的性质。
17、(1)100;;(2)补图见解析;(3)240人.
【解析】
根据条件图可知(1)一共抽取学生名,图中等级为D级的扇形的圆心角等于;(2)求出等级人数为名,再画图;(3)由(2)估计该校等级为C级的学生约有.
【详解】
解:在这次调查中,一共抽取学生名,
图中等级为D级的扇形的圆心角等于,
故答案为100、;
等级人数为名,
补全图形如下:
估计该校等级为C级的学生约有人.
本题考核知识点:统计图,由样本估计总体. 解题关键点:从统计图获取信息.
18、(1)答案见解析;(2)答案见解析;(3).
【解析】
(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、即可;
(2)根据题意,先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接即可;
(3)连接交x轴于点P,根据两点之间线段最短即可得出此时点到点与点的距离之和最小,然后利用待定系数法求出直线的解析式,从而求出点P 的坐标.
【详解】
解:(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、,如图所示,即为所求;
(2)先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接,如图所示,即为所求;
(3)连接交x轴于点P,根据两点之间线段最短,即可得出此时点到点与点的距离之和最小,
由平面直角坐标系可知:点A的坐标为(4,3),点的坐标为(3,-4)
设直线的解析式为y=kx+b
将A、的坐标代入,得
解得:
∴直线的解析式为y=7x-25
将y=0代入,得
∴点P的坐标为.
此题考查的是图形的平移、旋转、两点之间线段最短的应用和求一次函数的解析式,掌握图形的平移、旋转的画法、两点之间线段最短和利用待定系数法求一次函数的解析式是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(,1)或(,3)
【解析】
由点P在一次函数y=﹣2x+4的图象上,可设P(x,﹣2x+4),由矩形OCPD的面积是可求解.
【详解】
解:∵点P在一次函数y=﹣2x+4的图象上,
∴设P(x,﹣2x+4),
∴x(﹣2x+4)=,
解得:x1=,x2=,
∴P(,1)或(,3).
故答案是:(,1)或(,3)
本题运用了一次函数的点的特征的知识点,关键是运用了数形结合的数学思想.
20、y=x+1.
【解析】
直接利用原高度+上升的时间×1=海拔高度,进而得出答案.
【详解】
气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.
故答案为:y=x+1.
此题主要考查了函数关系式,正确表示出上升的高度是解题关键.
21、
【解析】
分析:本题考查的是菱形的面积问题,菱形的面积即等于对角线积的一半,也等于底乘以高.
解析:∵四边形ABCD是菱形,AC=8,DB=6,∴菱形面积为24,设AC与BD相较于点O,∴AC⊥BD,OA=4,OB=3,∴AB=5,又因为菱形面积为AB×DH=24,∴DH=.
故答案为.
22、5
【解析】
根据矩形的性质求出∠D=90°,OA=OB,AD=BC=8,求出AM,根据勾股定理求出OA即可.
【详解】
∵四边形ABCD为矩形,点M为AD的中点
∴点O为AC的中点,BC=AD=8,AC=BD
∴MO为三角形ACD的中位线
∴MO=CD,即CD=6
∴在直角三角形ACD中,由勾股定理得,AC==10。
∴OB=BD=AC=5.
本题考查了矩形的性质、勾股定理、三角形的中位线等知识点,能熟记矩形的性质是解此题的关键,注意:矩形的对边相等,矩形的对角线互相平分且相等,矩形的每个角都是直角.
23、<.
【解析】
试题分析:∵正比例函数的,∴y随x的增大而增大.
∵,∴y1<y1.
考点:正比例函数的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)77.5,81;(2)乙,理由见解析.
【解析】
(1)根据中位数和众数的定义分别进行解答即可;
(2)从中位数和众数方面分别进行分析,即可得出乙部门员工的生产技能水平较高.
【详解】
解:(1)根据中位数的定义可得:甲部门的中位数是第10、11个数的平均数,即=77.5;
∵81出现了4次,出现的次数最多,
∴乙部门的众数是81,
填表如下:
故答案为:77.5,81;
(2)从样本数据可以推断出乙部门员工的生产技能水平较高,理由为:
①乙部门在技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;
②乙部门在生产技能测试中,众数高于甲部门,所以乙部门员工的生产技能水平较高;
故答案为:乙.
本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.
25、(1),;(2).
【解析】
(1)把点P的坐标分别代入l1与l2的函数关系式,解方程即可;
(2)利用函数图象,写出直线在直线的上方所对应的自变量的范围即可.
【详解】
解:(1)因为点P是两条直线的交点,所以把点分别代入与中,得,,解得,.
(2)当时,的图象在的上面,
所以,不等式的解集是.
本题考查了一次函数的交点问题和一次函数与一元一次不等式的关系,读懂图象,弄清一次函数图象的交点与解析式的关系和一次函数与一元一次不等式的关系是解题的关键.
26、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
【解析】
(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
(2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
(3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
【详解】
解:(1)∠QEP=60°;
证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
则在△CPA和△CQB中,
,
∴△CQB≌△CPA(SAS),
∴∠CQB=∠CPA,
又因为△PEM和△CQM中,∠EMP=∠CMQ,
∴∠QEP=∠QCP=60°.
故答案为60;
(2)∠QEP=60°.以∠DAC是锐角为例.
证明:如图2,∵△ABC是等边三角形,
∴AC=BC,∠ACB=60°,
∵线段CP绕点C顺时针旋转60°得到线段CQ,
∴CP=CQ,∠PCQ=60°,
∴∠ACB+∠BCP=∠BCP+∠PCQ,
即∠ACP=∠BCQ,
在△ACP和△BCQ中,
,
∴△ACP≌△BCQ(SAS),
∴∠APC=∠Q,
∵∠1=∠2,
∴∠QEP=∠PCQ=60°;
(3)连结CQ,作CH⊥AD于H,如图3,
与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
∵∠DAC=135°,∠ACP=15°,
∴∠APC=30°,∠CAH=45°,
∴△ACH为等腰直角三角形,
∴AH=CH=AC=×4=,
在Rt△PHC中,PH=CH=,
∴PA=PH−AH=-,
∴BQ=−.
本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
空调
彩电
进价(元/台)
5400
3500
售价(元/台)
6100
3900
中学生综合素质评价成绩
中学生综合素质评价等级
A级
B级
C级
D级
部门
平均数
中位数
众数
甲
78.3
75
乙
78
80.5
部门
平均数
中位数
众数
甲
78.3
77.5
75
乙
78
80.5
81
相关试卷
这是一份2025届江苏省南通市八一中学数学九上开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市崇川区田家炳中学数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市崇川区启秀中学数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,四象限D.当x=时,y=1,解答题等内容,欢迎下载使用。