江苏省苏州工业园区青剑湖学校2024年数学九上开学复习检测模拟试题【含答案】
展开这是一份江苏省苏州工业园区青剑湖学校2024年数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一组数据 1,2,3,4,5 的方差与下列哪组数据的方差相同的是( )
A.2,4,6,8,10 B.10,20,30,40,50
C.11,12,13,14,15 D.11,22,33,44,55
2、(4分)在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有( )
①AC=5 ②∠A+∠C=180° ③AC⊥BD ④AC=BD
A.①②④B.①②③C.②③④D.①③④
3、(4分)边长为3cm的菱形的周长是( )
A.15cmB.12cmC.9cmD.3cm
4、(4分)用配方法解一元二次方程x2+4x+1=0,下列变形正确的是( )
A.(x﹣2)2﹣3=0B.(x+4)2=15C.(x+2)2=15D.(x+2)2=3
5、(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )
A.3B.4C.5D.6
6、(4分)如图所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,点D是AB的中点,点E是AC的中点,则DE的长为( )
A.5B.4C.3D.2
7、(4分)2019年6月7日是端午节,某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是( )
A.众数B.中位数C.平均数D.方差
8、(4分)已知分式的值是零,那么x的值是 ( )
A.-2B.0C.2D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)a、b、c是△ABC三边的长,化简+|c-a-b|=_______.
10、(4分)已知一组数据为1,10,6,4,7,4,则这组数据的中位数为________________.
11、(4分)如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km,则两点间的距离为______km.
12、(4分)已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.
13、(4分)如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形的对角线,交于点,、是上两点,,,.
(1)求证:四边形是平行四边形.(2)当平分时,求证:.
15、(8分)如图,分别延长平行四边形的边、至点、点,连接、,其中.
求证:四边形为平行四边形
16、(8分)如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF
(1)求证:四边形EDFG是正方形;
(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?
17、(10分)如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.
(1)求点C的坐标.
(2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.
18、(10分)如图,在平面直角坐标系xOy中,点,点,点.
①作出关于y轴的对称图形;
②写出点、、的坐标
(2)已知点,点在直线的图象上,求的函数解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个样本为1,3,a,b,c,2,2已知这个样本的众数为3,平均数为2,那么这个样本的中位数为_______
20、(4分)矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.
21、(4分)如图,在△ABC中,A,B两点的坐标分别为A(-1,3),B(-2,0), C(2,2),则△ABC的面积是________ .
22、(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)
23、(4分)如图,在四边形ABCD中,对角线AC、BD互相垂直平分,若使四边形ABCD是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)
二、解答题(本大题共3个小题,共30分)
24、(8分)请从不等式﹣4x>2,,中任选两个组成一个一元一次不等式组.解出这个不等式组,并在数轴上表示出它的解集.
25、(10分)计算(2+1)(2﹣1)﹣(1﹣2)2
26、(12分)如图,在▱ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据方差的性质即可解答本题.
【详解】
C选项中数据是在数据 1,2,3,4,5上都加10,故方差保持不变.
故选:C.
本题考查了方差,一般一组数据加上(减去)相同的数后,方差不变.
2、A
【解析】
当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.
【详解】
根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,
∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,
∴∠BAD+∠BCD=180° ,AC==5,
①正确,②正确,④正确;③不正确;
故选A.
本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.
3、B
【解析】
由菱形的四条边长相等可求解.
【详解】
解:∵菱形的边长为3cm
∴这个菱形的周长=4×3=12cm
故选:B.
本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.
4、D
【解析】
移项、配方,即可得出选项.
【详解】
,
,
,
.
故选.
本题考查了解一元二次方程,能正确配方是解此题的关键.
5、A
【解析】
作DE⊥AB于E,
∵AB=10,S△ABD =15,
∴DE=3,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DE=CD=3,
故选A.
6、D
【解析】
根据D为AB的中点可求出AD的长,再根据在直角三角形中,30°角所对的直角边等于斜边的一半即可求出DE的长度.
【详解】
解:∵D为AB的中点,AB=8,
∴AD=4,
∵DE⊥AC于点E,∠A=30°,
∴DE=AD=2,
故选D.
本题考查了直角三角形的性质:直角三角形中,30°角所对的直角边等于斜边的一半.
7、A
【解析】
幼儿园最值得关注的应该是哪种粽子爱吃的人数最多,即众数.
【详解】
解:由于众数是数据中出现次数最多的数,故幼儿园最值得关注的应该是统计调查数据的众数.
故选A.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
8、A
【解析】
分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
∵,
∴x+2=0且x-2≠0,
解得x=-2,
故选A.
本题考查了分式的值为零的条件,分母不能为0不要漏掉.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2a.
【解析】
可根据三角形的性质:两边之和大于第三边.依此对原式进行去根号和去绝对值.
【详解】
∵a、b、c是△ABC三边的长
∴a+c-b>0,a+b-c>0
∴原式=|a-b+c|+|c-a-b|
=a+c-b+a+b-c
=2a.
故答案为:2a.
考查了二次根式的化简和三角形的三边关系定理.
10、5.
【解析】
将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:将这组数据按从小到大的顺序排列是:1,4,4,6,7,10,位于最中是的两个数是4和6,因此中位数为(4+6)÷2=5.
故答案为5.
本题考查了中位数的含义及计算方法.
11、1.1
【解析】
根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km.
【详解】
∵在Rt△ABC中,∠ACB=90°,M为AB的中点,
∴MC=AB=AM=1.1(km).
故答案为:1.1.
此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.
12、AB=2BC.
【解析】
先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.
【详解】
解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:
∵DC=AB,E为AB的中点,
∴CD=BE=AE.
又∵DC∥AB,
∴四边形BCDE是平行四边形,
∵AB=2BC,
∴BE=BC,
∴四边形BCDE是菱形.
故答案为:AB=2BC.
本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.
13、5.
【解析】
根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.
【详解】
∵四边形ABCD为矩形,
∴∠BAD=90°,
∵将△ABM沿BM折叠得到△NBM,
∴∠MAB=∠MNB=90°.
∵M为射线AD上的一个动点,△NBC是直角三角形,
∴∠NBC=90°与∠NCB=90°都不符合题意,
∴只有∠BNC=90°.
①
当∠BNC=90°,N在矩形ABCD内部,如图3.
∵∠BNC=∠MNB=90°,
∴M、N、C三点共线,
∵AB=BN=3,BC=5,∠BNC=90°,
∴NC=4.
设AM=MN=x,
∵MD=5﹣x,MC=4+x,
∴在Rt△MDC中,CD5+MD5=MC5,
35+(5﹣x)5=(4+x)5,
解得x=3;
当∠BNC=90°,N在矩形ABCD外部时,如图5.
∵∠BNC=∠MNB=90°,
∴M、C、N三点共线,
∵AB=BN=3,BC=5,∠BNC=90°,
∴NC=4,
设AM=MN=y,
∵MD=y﹣5,MC=y﹣4,
∴在Rt△MDC中,CD5+MD5=MC5,
35+(y﹣5)5=(y﹣4)5,
解得y=9,
则所有符合条件的M点所对应的AM和为3+9=5.
故答案为5.
本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析.
【解析】
(1)首先证明△ADF≌△CBE,根据全等三角形的性质可得AD=CB,∠DAC=∠ACB,进而可得证明AD//CB,根据一组对边平行且等的四边形是平行四边形可得四边形ABCD是平行四边形;
(2)首先根据角平分线的性质可得∠DAC=∠BAC,进而可得出AB=BC,再根据一组邻边相等的平行四边形是菱形可得结论
【详解】
解:(1),,
,
在中,
,
四边形是平行四边形.
(2)平分,
,
,
,
,
,
平行四边形是菱形.
本题考查平行四边形的判定,熟练掌握平行四边形的性质及定义是解题关键.
15、证明见解析.
【解析】
由平行四边形的性质可得AB=CD,AD=BC,∠ADC=∠ABC,由“AAS”可证△ADF≌△CBE,可得AF=CE,DF=BE,可得AE=CF,则可得结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠ADC=∠ABC,
∴∠ADF=∠CBE,且∠E=∠F,AD=BC,
∴△ADF≌△CBE(AAS),
∴AF=CE,DF=BE,
∴AB+BE=CD+DF,
∴AE=CF,且AF=CE,
∴四边形AECF是平行四边形.
本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练运用平行四边形的判定和性质是本题的关键.
16、(1)详见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
【解析】
(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;
(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.
【详解】
(1)证明:连接CD,如图1所示.
∵为等腰直角三角形,,
D是AB的中点,
∴
在和中,
∴ ,
∴,
∵,
∴,
∴为等腰直角三角形.
∵O为EF的中点,,
∴,且,
∴四边形EDFG是正方形;
(2)解:过点D作于E′,如图2所示.
∵为等腰直角三角形,,
∴,点E′为AC的中点,
∴ (点E与点E′重合时取等号).
∴
∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
本题考查了正方形的判定与性质、等腰直角三角形以及全等三角形的判定与性质,解题的关键是:(1)找出GD⊥EF且GD=EF;(2)根据正方形的面积公式找出4≤S四边形EDFG<1.
17、(1)C(2,1);(2)经过点B1的反比例函数为y=.
【解析】
(1)过点C作CD⊥x轴于点D,BC与x轴平行可知CD⊥BC,即可求出CD的长,进而得出C点坐标;
(2)由图形旋转的性质得出CB1的长,进而可得出B1的坐标,设经过点B1(2,3)的反比例函数为,把B1的坐标代入即可得出k的值,从而得出反比例函数的解析式.
【详解】
解:(1)作CD⊥x轴于D.
∵BC与x轴平行,
∴S△ABC=BC•CD,
∵BC=2,S△ABC=1,
∴CD=1,
∴C(2,1);
(2)∵由旋转的性质可知CB1=CB=2,
∴B1(2,3).
设经过点B1(2,3)的反比例函数为,
∴3=,
解得k=6,
∴经过点B1的反比例函数为y=.
本题考查的是反比例函数综合题,涉及到图形旋转的性质及三角形的面积公式、用待定系数法求反比例函数的解析式,涉及面较广,难度适中.
18、 (1)①详见解析;②、、;(2)
【解析】
①依据轴对称的性质,即可得到△ABC关于y轴的对称图形△A1B1C1;②依据△A1B1C1的位置,即可得到点A1、B1、C1的坐标;
【详解】
解:(1)①作图如下.
②、、.
(2)由题意,
解得
∴函数解析式为.
本题主要考查了利用轴对称变换作图以及待定系数法的运用,掌握轴对称的性质是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】分析:先根据众数为3,平均数为2求出a,b,c的值,然后根据中位数的求法求解即可.
详解:∵这个样本的众数为3,
∴a,b,c中至少有两个数是3.
∵平均数为2,
∴1+3+a+b+c+2+2=2×7,
∴a+b+c=6,
∴a,b,c中有2个3,1个0,
∴从小到大可排列为:0,1,2,2,3,3,3,
∴中位数是2.
故答案为:2.
点睛:本题考查了众数、平均数、中位数的计算,熟练掌握众数、平均数、中位数的计算方法是解答本题的关键.众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.
20、1
【解析】
分析题意,知道,分别是,的点,则可知是△AOD的中位线;结合中位线的性质可知= OA,故只要求出OA的长即可;已知矩形的一条对角线长,则可得出AC的长,进而得出OA的长,便可得解.
【详解】
∵四边形ABCD是矩形,
∴BD=AC=4,
∴OA=2.
∵,是DO、AD的中点,
∴是△AOD的中位线,
∴= OA =1.
故答案为:1
此题考查中位线的性质,矩形的性质,解题关键在于利用中位线性质求解
21、1
【解析】
利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.
【详解】
解:△ABC的面积=3×4-×4×2-×3×1-×1×3
=12-4-1.1-1.1
=1.
故答案为1
本题考查了坐标与图形性质,主要是在平面直角坐标系中确定点的位置的方法和三角形的面积的求解.
22、①②③④
【解析】
分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.
详解:∵BC=EC,
∴∠CEB=∠CBE,
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠CEB=∠EBF,
∴∠CBE=∠EBF,
∴①BE平分∠CBF,正确;
∵BC=EC,CF⊥BE,
∴∠ECF=∠BCF,
∴②CF平分∠DCB,正确;
∵DC∥AB,
∴∠DCF=∠CFB,
∵∠ECF=∠BCF,
∴∠CFB=∠BCF,
∴BF=BC,
∴③正确;
∵FB=BC,CF⊥BE,
∴B点一定在FC的垂直平分线上,即PB垂直平分FC,
∴PF=PC,故④正确.
故答案为①②③④.
点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.
23、AC=BD 答案不唯一
【解析】
由四边形ABCD的对角线互相垂直平分,可得四边形ABCD是菱形,再添加∠DAB=90°,即可得出四边形ABCD是正方形.
【详解】
解:可添加AC=BD,
理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD, ∴平行四边形ABCD是菱形,
∵∠DAB=90°,
∴四边形ABCD是正方形.
故答案为:AC=BD(答案不唯一).
本题是考查正方形的判定,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.
二、解答题(本大题共3个小题,共30分)
24、见解析(答案不唯一)
【解析】
分别求出各不等式的解集,然后根据不同的组合求出公共部分即可得解.
【详解】
由﹣4x>2得x<﹣①;
由得x≤4②;
由得x≥2③,
∴(1)不等式组的解集是x<﹣;
(2)不等式组的解集是无解;
(3)不等式组的解集是
此题考查解一元一次不等式组,将不等式组的解集表示在数轴上,正确解不等式,熟记不等式组解的四种不同情况正确得到不等式组的解集是解题的关键.
25、4-2.
【解析】
直接利用乘法公式以及二次根式的性质分别计算得出答案.
【详解】
解:原式=12-1-(1-4+12)=4-2
此题主要考查了二次根式结合平方差公式和完全平方公式的混合运算,正确掌握相关运算法则是解题关键.
26、(1)△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)详见解析
【解析】
(1)因为ABCD是平行四边形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC那么构成了三角形ADE和CBF全等的条件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.
(2)要证明四边形AGCH是个平行四边形,已知的条件有AB∥CD,只要证得AG∥CH即可得出上述结论.那么就需要证明∠AEB=∠DFC,也就是证明△ABE≌△CDF,根据AB∥CD.∴∠ABD=∠CDB.这两个三角形中已知的条件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的对应角相等,那么两三角形就全等了(SAS).
【详解】
(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;
(2)证明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,
∴△ADE≌△CBF,
∴∠AED=∠CFB.
∵∠FEG=∠AED=∠CFB=∠EFH,
∴AG‖HC,而且,AH‖GC,
∴四边形AGCH是平行四边形
本题考查了全等三角形的判定,平行四边形的性质和判定等知识点,本题中公共全等三角形来得出线段和角相等是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届江苏省工业园区青剑湖学校九年级数学第一学期开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省苏州工业园区青剑湖学校2023-2024学年九年级数学第一学期期末复习检测试题含答案,共8页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省工业园区青剑湖学校九年级数学第一学期期末质量检测试题含答案,共7页。