江苏省苏州市苏州工业园区2024-2025学年数学九上开学综合测试模拟试题【含答案】
展开这是一份江苏省苏州市苏州工业园区2024-2025学年数学九上开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为( )
A.B.C.D.
2、(4分)若x<y,则下列结论不一定成立的是( )
A.B.C.D.
3、(4分)如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于 E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为( )
A.1B.1.3C.1.2D.1.5
4、(4分)如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )
A.B.
C.D.
5、(4分)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是( )
A.AB=ADB.AC=BDC.∠ABC=90°D.∠ABC=∠ADC
6、(4分)下列说法中,不正确的是( )
A.两组对边分别平行的四边形是平行四边形
B.对角线互相平分且垂直的四边形是菱形
C.一组对边平行另外一组对边相等的四边形是平行四边形
D.有一组邻边相等的矩形是正方形
7、(4分)如图,以某点为位似中心,将△OAB进行位似变换得到△DFE,若△OAB与△DFE的相似比为k,则位似中心的坐标与k的值分别为( )
A.(2,2),2B.(0,0),2C.(2,2),D.(0,0),
8、(4分)若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是 ( )
A.菱形B.对角线互相垂直的四边形
C.矩形D.对角线相等的四边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.
10、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
11、(4分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值_____.
12、(4分)如图,正方形的边长为5 cm,是边上一点,cm.动点由点向点运动,速度为2 cm/s ,的垂直平分线交于,交于.设运动时间为秒,当时,的值为______.
13、(4分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.
15、(8分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:
甲:394,400,408,406,410,409,400,400,393,395
乙:402,404,396,403,402,405,397,399,402,398
整理数据:
表一
分析数据:
表二
得出结论:
包装机分装情况比较好的是______(填甲或乙),说明你的理由.
16、(8分)某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图
根据以上信息,整理分析数据如下:
(1)写出表格中,,的值: , , .
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.
17、(10分)如图,在中,点,是直线上的两点,,连结,,,.
(1)求证:四边形是平行四边形.
(2)若,,,四边形是矩形,求的长.
18、(10分)计算:
(1)(结果保留根号);
(2)(a>0,b>0)(结果保留根号).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)对于反比例函数,当时,的取值范围是__________.
20、(4分)若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.
21、(4分)若关于的一元二次方程有两个相等的实数根,则的值是__________.
22、(4分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于______.
23、(4分)如图,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则BC=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在等腰梯形ABCD中,,,,.点Р从点B出发沿折线段以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点O向上作射线OKIBC,交折线段于点E.点P、O同时开始运动,为点Р与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒.
(1)点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点Р运动到AD上时,t为何值能使?
(3)t为何值时,四点P、Q、C、E成为一个平行四边形的顶点?
(4)能为直角三角形时t的取值范围________.(直接写出结果)
(注:备用图不够用可以另外画)
25、(10分)涡阳某童装专卖店在销售中发现,一款童装每件进价为元,销售价为元时,每天可售出件,为了迎接“六-一”儿童节,商店决定采取适当的降价措施,以扩大销售增加利润,经市场调查发现,如果每件童装降价元,那么平均可多售出件.
(1)若每件童装降价元,每天可售出 件,每件盈利 元(用含的代数式表示);
每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利元.
26、(12分)某书店以每本21元的价格购进一批图书,若每本图书售价a元,则每周可卖出(350﹣10a)件,但物价局限定每本图书的利润率不得超过20%,该书店计划“五一”黄金周要盈利400元.问需要购进图书多少本?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:先求得直线AB解析式为y=x﹣1,即可得P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点坐标公式,即可得到点A'的坐标.
详解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴A(4,3),
设直线AB解析式为y=kx+b,
则,解得,
∴直线AB解析式为y=x﹣1,
令x=0,则y=﹣1,
∴P(0,﹣1),
又∵点A与点A'关于点P成中心对称,
∴点P为AA'的中点,
设A'(m,n),则=0,=﹣1,
∴m=﹣4,n=﹣5,
∴A'(﹣4,﹣5),
故选A.
点睛:本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.
2、C
【解析】
根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.
【详解】
解:A,不等式两边同时减3,不等式的方向不变,选项A正确;
B,不等式两边同时乘-5,不等式的方向改变,选项B正确;
C,x<y,没有说明x,y的正负,所以不一定成立,选项C错误;
D,不等式两边同时乘,不等式的方向改变,选项D正确;
故选:C.
本题主要考查了不等式的性质,即不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变;理解不等式的性质是解题的关键.
3、C
【解析】
首先证明四边形AEPF为矩形,可得AM=AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.
【详解】
在△ABC中,因为AB2+AC2=BC2,
所以△ABC为直角三角形,∠A=90°,
又因为PE⊥AB,PF⊥AC,
故四边形AEPF为矩形,
因为M 为 EF 中点,
所以M 也是 AP中点,即AM=AP,
故当AP⊥BC时,AP有最小值,此时AM最小,
由,可得AP=,
AM=AP=
故本题正确答案为C.
本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.
4、B
【解析】
先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象
【详解】
根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高
为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形
完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S
关于t的图象的中间部分为水平的线段,故A,D选项错误;
当t=0时,S=0,故C选项错误,B选项正确;
故选:B
本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键
5、A
【解析】
根据菱形的定义和判定定理即可作出判断.
【详解】
A、根据菱形的定义可得,当AB=AD时平行四边形ABCD是菱形,故A选项符合题意;
B、根据对角线相等的平行四边形是矩形,可知AC=BD时,平行四边形ABCD是矩形,故B选项不符合题意;
C、有一个角是直角的平行四边形是矩形,可知当∠ABC=90° 时,平行四边形ABCD是矩形,故C选项不符合题意;
D、由平行四边形的性质可知∠ABC=∠ADC,∠ABC=∠ADC这是一个已知条件,因此不能判定平行四边形ABCD是菱形,故D选项不符合题意,
故选A.
本题考查了平行四边形的性质,菱形的判定、矩形的判定等,熟练掌握相关的判定方法是解题的关键.
6、C
【解析】
根据平行四边形、菱形和正方形的判定方法进行分析可得.
【详解】
A. 两组对边分别平行的四边形是平行四边形,正确;
B. 对角线互相平分且垂直的四边形是菱形,正确;
C. 一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故错误;
D. 有一组邻边相等的矩形是正方形,正确.
故选C.
7、A
【解析】
两对对应点的连线的交点即为位似中心;找到任意一对对应边的边长,让其相比即可求得k.
【详解】
连接OD、BE,延长OD交BE的延长线于点O′,点O′也就是位似中心,坐标为(1,1),k=OA:FD=8:4=1.
故选A.
本题考查了位似变换、坐标与图形的性质等知识,记住两对对应点的连线的交点为位似中心;任意一对对应边的比即为位似比.
8、D
【解析】
根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.
【详解】
解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,
∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
∴EH∥FG,EF=FG,
∴四边形EFGH是平行四边形,
假设AC=BD,
∵EH=AC,EF=BD,
则EF=EH,
∴平行四边形EFGH是菱形,
即只有具备AC=BD即可推出四边形是菱形,
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(3,1)
【解析】
关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.
【详解】
由题意得点C(-3,1)的对应点C′的坐标是(3,1).
考点:关于y轴对称的点的坐标
本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.
10、y1>y2
【解析】
∵k=a<0,
∴y随x的增大而减小.
∵−4<2,∴y1>y2.
故答案为y1>y2.
11、1.
【解析】
根据a+b=3,ab=2,应用提取公因式法,以及完全平方公式,求出代数式a3b+2a2b2+ab3的值是多少即可.
【详解】
∵a+b=3,ab=2,
∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=2×32=1
故答案为:1.
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
12、2
【解析】
连接ME,根据MN垂直平分PE,可得MP=ME,当时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t 的值.
【详解】
连接ME
根据MN垂直平分PE
可得为等腰三角形,即ME=PM
故答案为2.
本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.
13、15°
【解析】
根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.
【详解】
解:根据菱形的对角相等得∠ADC=∠B=70°.
∵AD=AB=AE,
∴∠AED=∠ADE.
根据折叠得∠AEB=∠B=70°.
∵AD∥BC,
∴∠DAE=∠AEB=70°,
∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.
∴∠EDC=70°-55°=15°.
故答案为:15°.
本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、24
【解析】
试题分析:阴影部分的面积等于以AC、BC为直径的半圆的面积加上△ABC的面积减去以AB为直径的半圆的面积.
试题解析:根据Rt△ABC的勾股定理可得:AB=10,则S==24
考点:勾股定理
15、整理数据:3,1,5;分析数据:400,402;得出结论:乙,理由详见解析.
【解析】
整理数据:根据所给的数据填写表格一即可;分析数据:根据中位数、众数的定义求解即可;得出结论:结合表二中的数据解答即可.
【详解】
整理数据:
表一中,
甲组:393≤x<396的有3个,405≤x<408的有1个;
乙组:402≤x<405的有5个;
故答案为:3,1,5;
分析数据:
表二中,
甲组:把10个数据按照从小到大顺序排列为:393,394,395,400,400,400,406,408,409,410,
中位数为中间两个数据的平均数==400,
乙组:出现次数最多的数据是402,
∴众数是402;
故答案为:400,402;
得出结论:
包装机分装情况比较好的是乙;理由如下:
由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,
所以包装机分装情况比较好的是乙.
故答案为:乙(答案不唯一,合理即可).
本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.
16、(1)1,80,1;(2)从平均数和中位数进行分析,中学组代表队的决赛成绩较好;(3)中学组代表队选手成绩较稳定.
【解析】
(1)根据平均数、中位数、众数的计算方法,通过计算得出答案,
(2)从平均数和中位数两个方面进行比较、分析得出结论,
(3)利用方差的计算公式,分别计算两个组的方差,通过比较得出答案.
【详解】
(1)中学组的平均数分;
小学组的成绩:70、75、80、100、100因此中位数为:80;
中学组出现次数最多的分数是1分,所有众数为1分;
故答案为:1,80,1.
(2)从平均数上看,两个队都是1分,但从中位数上看中学组1分比小学组的80分要好,
因此从平均数和中位数进行分析,中学组的决赛成绩较好;
答:从平均数和中位数进行分析,中学组代表队的决赛成绩较好.
(3)
,
中学组的比较稳定.
答:中学组代表队选手成绩较稳定.
考查从统计图、统计表中获取数据的能力,以及平均数、中位数、众数、方差的意义和计算方法、明确各个统计量反映一组数据哪些特征,即要对一组数据进行分析,需要利用哪个统计量.
17、 (1)见解析;(2)
【解析】
(1)连结交于点,由四边形ABCD是平行四边形,可得OA=OC,OD=OB,又因为,从而OE=OF,可证四边形是平行四边形;
(2)由勾股定理可求出BD的长,进而求出OD的长,再由勾股定理求出AO的长,根据矩形的性质可知AO=EO,从而可求出DE的长.
【详解】
(1)连结交于点,
∵四边形ABCD是平行四边形,
∴OA=OC,OD=OB,
∵,
∴OE=OF,
四边形是平行四边形;
(2),,,
,
,
.
四边形是矩形,
,,,
,
.
本题考查了平行四边形的判定与性质,矩形的性质,勾股定理等知识,熟练掌握平行四边形的判定与性质是解答(1)的关键,熟练掌握矩形的性质是解(2)的关键.
18、(1);(2).
【解析】
(1)先化简二次根式,再合并同类二次根式即可得;
(2)根据二次根式的乘法法则计算,再化简二次根式即可得.
【详解】
解:(1)原式;
(2)原式.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣3<y<1
【解析】
先求出x=﹣1时的函数值,再根据反比例函数的性质求解.
【详解】
解:当x=﹣1时,
,
∵k=3>1,
∴图象分布在一、三象限,在各个象限内,y随x的增大而减小,
∴当x<1时,y随x的增大而减小,且y<1,
∴y的取值范围是﹣3<y<1.
故答案为:﹣3<y<1.
本题主要考查反比例函数的性质.对于反比例函数(k≠1),当k>1时,在各个象限内,y随x的增大而减小;当k<1时,在各个象限内,y随x的增大而增大.
20、﹣1
【解析】
直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.
【详解】
∵ab=-1,a+b=1,
∴a1b+ab1=ab(a+b)
=-1×1
=-1.
故答案为-1.
此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.
21、1
【解析】
因为关于的一元二次方程有两个相等的实数根,故 ,代入求解即可.
【详解】
根据题意可得: 解得:m=1
故答案为:1
本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.
22、4
【解析】
根据等边三角形的性质和含30°的直角三角形的性质解答即可.
【详解】
∵在△ABC中,∠B=∠C=60°,
∴∠A=60°,
∵DE⊥AB,
∴∠AED=30°,
∵AD=1,
∴AE=2,
∵BC=6,
∴AC=BC=6,
∴CE=AC−AE=6−2=4.
故答案为4.
本题考查了等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质.
23、2
【解析】
根据题意推出AB=AB1=2,由AE=CE推出AB1=B1C,即AC=4,然后依据勾股定理可求得BC的长.
【详解】
解:∵AB=2cm,AB=AB1
∴AB1=2cm,
∵四边形ABCD是矩形,AE=CE,
∴∠ABE=∠AB1E=90°
∵AE=CE,
∴AB1=B1C,
∴AC=4cm.
在Rt△ABC中,BC= .
故答案为:2cm.
本题主要考查翻折的性质、矩形的性质、等腰三角形的性质,解题的关键在于推出AB=AB1.
二、解答题(本大题共3个小题,共30分)
24、 (2) 秒,;(2)详见解析;(3);(4)或.
【解析】
(2)把BA,AD,DC它们的和求出来再除以速度每秒5个单位就可以求出t的值,然后也可以求出BQ的长;
(2)如图2,若PQ∥DC,又AD∥BC,则四边形PQCD为平行四边形,从而PD=QC,用t分别表示QC,BA,AP,然后就可以得出关于t的方程,解方程就可以求出t;
(3)分情况讨论,当P在BA上运动时,E在CD上运动.0≤t≤20,QC的长度≤30,PE的长度>AD=75,QC
可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角.由∠PEQ<∠DEQ,可知∠PEQ一定是锐角.对于∠PQE,
∠PQE≤∠CQE,只有当点P与C重合,即t=35时,如图4,∠PQE=90°,△PQE为直角三角形.
【详解】
解:(2)t=(50+75+50)÷5=35(秒)时,点P到达终点C,
此时,QC=35×3=205,
∴BQ的长为235−205=30.
(2)如图2,若PQ∥DC,
∵AD∥BC,
∴四边形PQCD为平行四边形,
∴PD=QC,
由QC=3t,BA+AP=5t
得50+75−5t=3t,
解得t=.
∴当t=时,PQ∥DC.
(3)当P在BA上运动时,E在CD上运动.0⩽t⩽20,QC的长度⩽30,PE的长度>AD=75,QC
∴PE=QC.
如图2,作DH⊥BC于H,AG⊥BC于G,
∠AGB=∠DHC=90∘
∴四边形AGHD是矩形,
∴GH=AD=75.AG=DH.
在△ABG和△DCH中,
∴△ABG≌△DCH,
∴BG=CH=(235−75)=30,
∴ED=3(t−20)
∵AP=5t−50,
∴PE=75−(5t−50)−3(t−20)=255−8t.
∵QC=3t,
∴255−8t=3t,
t=.
当P在E点的右侧且在AD上时,t⩽25,P、Q、C. E为直角梯形,
当P在CD上,E在AD上QE与PC不平行,P、Q、C. E不可能为平行四边形,
∴t=;
(4)①当点P在BA(包括点A)上,即0
又有QE=4t=PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形。
②当点P、E都在AD(不包括点A但包括点D)上,即20
即5t−50+3t−30≠75,解得t≠.③当点P在DC上(不包括点D但包括点C),
即25
对于∠PQE,∠PQE⩽∠C, 只有当点P与C
重合,即t=35时,如图4,∠PQE=90∘,△PQE为直角三角形。
综上所述,当△PQE为直角三角形时,t的取值范围是0
25、 (1);(2)每件童装降价元时,平均每天盈利元.
【解析】
(1)根据每降价1元,可多售出3件,降价x元,则可多售出3x件,由此即可求得答案;
(2)根据总利润=单件利润×数量列出方程,解方程即可得答案.
【详解】
(1)若每件童装降价元,每天可售出(30+3x)件,每件盈利(100-60-x)元,
故答案为:;
由题意得:,
化简得:,
解得:,
要让利顾客,取,
答:每件童装降价元时,平均每天盈利元.
本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
26、需要购进图书2本.
【解析】
根据总利润=每本利润×销售数量,可得出关于a的一元二次方程,解之可得出a的值,结合利润率不得超过20%可确定a值,再将其代入350﹣10a中即可求出结论.
【详解】
解:依题意,得:(a﹣21)(350﹣10a)=400,
整理,得:a2﹣56a+775=0,
解得:a1=25,a2=1.
∵21×(1+20%)=25.2,
∴a2=1不合题意,舍去,
∴350﹣10a=350﹣10×25=2.
答:需要购进图书2本.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
频数种类
质量()
甲
乙
____________
0
0
3
3
1
0
____________
____________
1
3
0
种类
甲
乙
平均数
401.5
400.8
中位数
____________
402
众数
400
____________
方差
36.85
8.56
平均数(分
中位数(分
众数(分
小学组
85
100
中学组
85
相关试卷
这是一份江苏省苏州市葛江中学2024-2025学年九上数学开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省苏州工业园区星澄学校2024-2025学年九上数学开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省苏州市梁丰初级中学九上数学开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。