终身会员
搜索
    上传资料 赚现金

    江苏省苏州市振华中学2025届数学九年级第一学期开学综合测试试题【含答案】

    立即下载
    加入资料篮
    江苏省苏州市振华中学2025届数学九年级第一学期开学综合测试试题【含答案】第1页
    江苏省苏州市振华中学2025届数学九年级第一学期开学综合测试试题【含答案】第2页
    江苏省苏州市振华中学2025届数学九年级第一学期开学综合测试试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州市振华中学2025届数学九年级第一学期开学综合测试试题【含答案】

    展开

    这是一份江苏省苏州市振华中学2025届数学九年级第一学期开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列运算错误的是
    A.B.
    C.D.
    2、(4分)下列调查中,适宜采用抽样调查方式的是( )
    A.调查八年级某班学生的视力情况
    B.调查乘坐飞机的旅客是否携带违禁物品
    C.调查某品牌LED灯的使用寿命
    D.学校在给学生订制校服前尺寸大小的调查
    3、(4分)一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是( )
    A.4B.5C.6D.7
    4、(4分)若,则下列变形错误的是( )
    A.B.C.D.
    5、(4分)某水果超市从生产基地以4元/千克购进一种水果,在运输和销售过程中有10%的自然损耗.假设不计其他费用,超市要使销售这种水果的利润不低于35%,那么售价至少为( )
    A.5.5元/千克B.5.4元/千克C.6.2元/千克D.6元/千克
    6、(4分)下列命题,①4的平方根是2;②有两边和一角相等的两个三角形全等;③等腰三角形的底角必为锐角;④两组对角分别相等的四边形是平行四边形.其中真命题有( )
    A.4个B.3个C.2个D.1个
    7、(4分)点( )在函数y=2x-1的图象上.
    A.(1,3)B.(−2.5,4)C.(−1,0)D.(3,5)
    8、(4分)一组数据3,4,4,5,5,5,6,6,7众数是( )
    A.4B.5C.6D.7
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分) 如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则Sn=_____.(用含n的式子表示)
    10、(4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是 .
    11、(4分)如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=___°.
    12、(4分)如图,直线y=3x和y=kx+2相交于点P(a,3),则关于x不等式(3﹣k)x≤2的解集为_____.
    13、(4分)如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时, 为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,矩形ABCD中,AB=2,BC=3,过对角线AC中点O的直线分别交边BC、AD于点E、F
    (1)求证:四边形AECF是平行四边形;
    (2)如图2,当EF⊥AC时,求EF的长度.
    15、(8分)(1)发现.①;②;③;……写出④ ;⑤ ;
    (2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;
    (3)证明这个猜想.
    16、(8分)如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
    (1)求证:AB=CF;
    (2)连接DE,若AD=2AB,求证:DE⊥AF.
    17、(10分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
    (1)请填写下表
    (2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
    (3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.
    18、(10分)材料:思考的同学小斌在解决连比等式问题:“已知正数,,满足,求的值”时,采用了引入参数法,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出,,之间的关系,从而解决问题.过程如下:
    解;设,则有:
    ,,,
    将以上三个等式相加,得.
    ,,都为正数,
    ,即,.
    .
    仔细阅读上述材料,解决下面的问题:
    (1)若正数,,满足,求的值;
    (2)已知,,,互不相等,求证:.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)化简二次根式的结果是______.
    20、(4分)如图,在矩形中,,点,分别在,上,将沿折叠,使点落在上的点处,又将沿折叠,使点落在直线与的交点处;___________.
    21、(4分)如图,在△ABC中,∠B=70°,∠BAC=30°,将△ABC绕点C顺时针旋转得到△EDC,当点B的对应点D恰好落在AC边上时,∠CAE的度数为___________.
    22、(4分)若在实数范围内有意义,则x的取值范围是_________.
    23、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在四边形ABCD中,AB=CD,AD=BC,点E在CD上,连接AE并延长,交BC的延长线于F.
    (1)求证:△ADE∽△FCE;
    (2)若AB=4,AD=6,CF=2,求DE的长.
    25、(10分)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
    (1)菱形ABCO的边长
    (2)求直线AC的解析式;
    (3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
    ①当0<t<时,求S与t之间的函数关系式;
    ②在点P运动过程中,当S=3,请直接写出t的值.
    26、(12分)学校准备购买纪念笔和记事本奖励同学,纪念笔的单价比记事本的单价多4元,且用30元买记事本的数量与用50元买纪念笔的数量相同.求纪念笔和记事本的单价.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据二次根式的加减法、乘法、除法逐项进行计算即可得.
    【详解】
    A. 与不是同类二次根式,不能合并,故错误,符合题意;
    B. ,正确,不符合题意;
    C. = ,正确,不符合题意;
    D. ,正确,不符合题意.
    故选A.
    本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.
    2、C
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、调查八年级某班学生的视力情况适合全面调查,故A选项错误;
    B、调查乘坐飞机的旅客是否携带违禁物品,适合全面调查,故B选项错误;
    C、调查某品牌LED灯的使用寿命适合抽样调查,故C选项正确;
    D、学校在给学生订制校服前尺寸大小的调查,适于全面调查,故D选项错误.
    故选C.
    对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    3、B
    【解析】
    如果设A点关于y轴的对称点为A′,那么C点就是A′B与y轴的交点.易知A′(-3,3),又B(1,0),可用待定系数法求出直线A′B的方程.再求出C点坐标,根据勾股定理分别求出AC、BC的长度.那么光线从A点到B点经过的路线长是AC+BC,从而得出结果.
    【详解】
    解:如果将y轴当成平面镜,设A点关于y轴的对称点为A′,则由光路知识可知,A′相当于A的像点,光线从A到C到B,相当于光线从A′直接到B,所以C点就是A′B与y轴的交点.
    ∵A点关于y轴的对称点为A′,A(3,3),
    ∴A′(-3,3),
    进而由两点式写出A′B的直线方程为:y=−(x-1).
    令x=0,求得y=.所以C点坐标为(0,).
    那么根据勾股定理,可得:
    AC==,BC==.
    因此,AC+BC=1.
    故选:B.
    此题考查轴对称的基本性质,勾股定理的应用等知识点.此题考查的思维技巧性较强.
    4、D
    【解析】
    根据两内项之积等于两外项之积对各选项分析判断即可得解
    【详解】
    解:由得3a=2b,
    A. 由可得:3a=2b, 本选项正确;
    B. 由可得:3a=2b, 本选项正确;
    C. , 可知本选项正确;
    D. ,由前面可知本选项错误。
    故选:D
    本题考查了比例的性质,熟练掌握内项之积等于外项之积是解题的关键.
    5、D
    【解析】
    设这种水果每千克的售价为x元,购进这批水果m千克,根据这种水果的利润不低于35%列不等式求解即可.
    【详解】
    设这种水果每千克的售价为x元,购进这批水果m千克,根据题意,得
    (1-10%)mx-4m≥4m×35%,
    解得x≥6,
    答:售价至少为6元/千克.
    故选D.
    此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.
    6、C
    【解析】
    根据平方根的定义对①进行判断;根据全等三角形的判定方法对②进行判断;根据等腰三角形的性质和平行四边形的判定方法对③④进行判断.
    【详解】
    解:①4的平方根是±2,是假命题;
    ②有两边和其夹角相等的两个三角形全等,是假命题;
    ③等腰三角形的底角必为锐角,是真命题;
    ④两组对角分别相等的四边形是平行四边形是真命题;
    故选:C.
    本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    7、D
    【解析】
    将各点坐标代入函数y=2x−1,依据函数解析式是否成立即可得到结论.
    【详解】
    解:A.当时,,故不在函数的图象上.
    B.当时,,故不在函数的图象上.
    C.当时,,故不在函数的图象上.
    D.当时,,故在函数的图象上.
    故选:D.
    本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.
    8、B
    【解析】
    先把数据按大小排列,然后根据众数的定义可得到答案.
    【详解】
    数据按从小到大排列:3,4,4,5,5,5,6,6,7,
    数据5出现3次,次数最多,所以众数是5.
    故选B.
    此题考查众数,难度不大
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、:()n.
    【解析】
    由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到Sn.
    解:∵等边三角形ABC的边长为2,AB1⊥BC,
    ∴BB1=1,AB=2,
    根据勾股定理得:AB1=,
    ∴S1=××()2=()1;
    ∵等边三角形AB1C1的边长为,AB2⊥B1C1,
    ∴B1B2=,AB1=,
    根据勾股定理得:AB2=,
    ∴S2=××()2=()2;
    依此类推,Sn=()n.
    故答案为()n.
    “点睛”此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.
    10、1.
    【解析】
    试题分析:延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
    解:连接AE,并延长交CD于K,
    ∵AB∥CD,
    ∴∠BAE=∠DKE,∠ABD=∠EDK,
    ∵点E、F、G分别是BD、AC、DC的中点.
    ∴BE=DE,
    在△AEB和△KED中,

    ∴△AEB≌△KED(AAS),
    ∴DK=AB,AE=EK,EF为△ACK的中位线,
    ∴EF=CK=(DC﹣DK)=(DC﹣AB),
    ∵EG为△BCD的中位线,∴EG=BC,
    又FG为△ACD的中位线,∴FG=AD,
    ∴EG+GF=(AD+BC),
    ∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,
    ∴EG+GF=6,FE=3,
    ∴△EFG的周长是6+3=1.
    故答案为:1.
    点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
    11、17.1.
    【解析】
    根据矩形的性质由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ECD即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠ADC=90°,
    ∵∠ADF=21°,
    ∴∠CDF=∠ADC﹣∠ADF=90°﹣21°=61°,
    ∵DF=DC,
    ∴∠ECD=,
    故答案为:17.1.
    本题考查了矩形的性质,等腰三角形的性质,解本题的关键是求出∠CDF.是一道中考常考的简单题.
    12、x≤2.
    【解析】
    【分析】先把点P(a,3)代入直线y=3x求出a的值,可得出P点坐标,再根据函数图象进行解答即可.
    【详解】∵直线y=3x和直线y=kx+2的图象相交于点P(a,3),
    ∴3=3a,解得a=2,
    ∴P(2,3),
    由函数图象可知,当x≤2时,直线y=3x的图象在直线y=kx+2的图象的下方.
    即当x≤2时,kx+2≥3x,即:(3-k)x≤2.
    故正确答案为:x≤2.
    【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.
    13、3,5.4,6,6.5
    【解析】
    作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值
    【详解】
    点在上,时,秒;
    点在上,时,过点作交于点,

    点在上,时,
    ④点在上,时,过点作交于点,
    为的中位线

    本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)EF=.
    【解析】
    (1)证明△AOF≌△COE全等,可得AF=EC,∵AF∥EC,∴四边形AECF是平行四边形;
    (2)由(1)知四边形AECF是平行四边形,且EF⊥AC,∴四边形AECF为菱形,假设BE=a,根据勾股定理求出a,从而得知EF的长度;
    【详解】
    解:(1)∵矩形ABCD,∴AF∥EC,AO=CO
    ∴∠FAO=∠ECO
    ∴在△AOF和△COE中,,
    ∴△AOF≌△COE(ASA)
    ∴AF=EC
    又∵AF∥EC
    ∴四边形AECF是平行四边形;
    (2)由(1)知四边形AECF是平行四边形,
    ∵EF⊥AC,
    ∴四边形AECF为菱形,
    设BE=a,则AE=EC=3-a
    ∴a2+22=(3-a)2
    ∴a=
    则AE=EC=,
    ∵AB=2,BC=3,
    ∴AC==
    ∴AO=OC=,
    ∴OE===,
    ∴EF=2OF=.
    此题考查平行四边形的判定,菱形的性质,勾股定理,全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.
    15、(1),;(2);(3)证明见解析.
    【解析】
    (1)根据题目中的例子直接写出结果;
    (2)根据(1)中的特例,可以写出相应的猜想;
    (3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题.
    【详解】
    解:(1)由例子可得,
    ④为:==,⑤=,
    (2)如果n为正整数,用含n的式子表示这个运算规律:= ,
    (3)证明:∵n是正整数,
    ∴==.
    即= .
    故答案为(1)==,=;(2)= ;(3)证明见解析.
    本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.
    16、详见解析.
    【解析】
    试题分析:(1)要证明AB=CF可通过△AEB≌△FEC证得,利用平行四边形ABCD的性质不难证明;(2)由平行四边形ABCD的性质可得AB=CD,由△AEB≌△FEC可得AB=CF,所以DF=2CF=2AB,所以AD=DF,由等腰三角形三线合一的性质可证得ED⊥AF .
    试题解析:
    (1)∵四边形ABCD是平行四边形,
    ∴AB∥DF,
    ∴∠BAE=∠F,
    ∵E是BC的中点,
    ∴BE=CE,
    在△AEB和△FEC中,

    ∴△AEB≌△FEC(AAS),
    ∴AB=CF;
    (2)∵四边形ABCD是平行四边形,
    ∴AB=CD,
    ∵AB=CF,DF=DC+CF ,
    ∴DF=2CF,
    ∴DF=2AB,
    ∵AD=2AB,
    ∴AD=DF,
    ∵△AEB≌△FEC,
    ∴AE=EF,
    ∴ED⊥AF .
    点睛:掌握全等三角形的性质及判定、平行四边形的性质、等腰三角形三线合一的性质.
    17、(1)x﹣60、300﹣x、260﹣x;(2)w=10x+10200(60≤x≤260);(3)m的取值范围是0<m≤1.
    【解析】
    分析:(1)根据题意可以将表格中的空缺数据补充完整;
    (2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;
    (3)根据题意,利用分类讨论的数学思想可以解答本题.
    详解:(1)∵D市运往B市x吨,
    ∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,
    故答案为:x﹣60、300﹣x、260﹣x;
    (2)由题意可得,
    w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,
    ∴w=10x+10200(60≤x≤260);
    (3)由题意可得,
    w=10x+10200﹣mx=(10﹣m)x+10200,
    当0<m<10时,
    x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,
    解得,0<m≤1,
    当m>10时,
    x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,
    解得,m≤,
    ∵<10,
    ∴m>10这种情况不符合题意,
    由上可得,m的取值范围是0<m≤1.
    点睛:本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
    18、(1)k=;(2)见解析.
    【解析】
    (1)根据题目中的例子可以解答本题;
    (2)将题目中的式子巧妙变形,然后化简即可证明结论成立.
    【详解】
    解:(1)∵正数x、y、z满足,
    ∴x=k(2y+z),y=k(2z+x),z=k(2x+y),
    ∴x+y+z=3k(x+y+z),
    ∵x、y、z均为正数,
    ∴k=;
    (2)证明:设=k,
    则a+b=k(a-b),b+c=2k(b-c),c+a=3k(c-a),
    ∴6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a),
    ∴6(a+b)+3(b+c)+2(c+a)=1,
    ∴8a+9b+5c=1.
    故答案为:(1)k=;(2)见解析.
    本题考查比例的性质、等式的基本性质,正确理解给出的解题过程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    利用二次根式的性质化简.
    【详解】
    =.
    故选为:.
    考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
    20、3
    【解析】
    首先连接,可以得到连接是∠的平分线,所以,又,所以是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.
    【详解】
    解:如下图所示,连接
    ∵将沿折叠,使点落在上的点处,又将沿折叠,使点落在直线与的交点处
    ∴,∠1=∠2
    ∵∠2=∠3
    ∴∠1=∠3
    在△和△中
    ∴△△

    又∵

    ∴为对角线AC的中点
    即AC=2AB=18
    ∴∠ACB=30°
    则∠BAC=60°,∠=∠=30°
    ∴∠=∠1=60°
    ∴∠=∠=30°

    ∵DF+CF=CD=AB=9
    ∴DF=
    故答案为3.
    本题考查了折叠问题和矩形的性质,注意折叠前面的两个图形是两个全等形.
    21、50°
    【解析】
    由旋转可得∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,则∠CAE=∠CEA,再由三角形的外角性质可得∠CDE=∠CAE+∠AED可求出∠CAE的度数.
    【详解】
    ∵△ABC绕点C顺时针旋转得到△EDC
    ∴∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,
    ∴∠CAE=∠CEA,
    则∠AED=∠CEA-30°
    又∵∠CDE=∠CAE+∠AED
    即∠CAE+∠CAE-30°=70°
    解得∠CAE=50°
    故答案为:50°.
    本题考查三角形中的角度计算,解题的关键是利用旋转的性质得到旋转后的角度,并利用三角形的外角性质建立等量关系.
    22、x≥-1
    【解析】
    根据二次根式的性质即可求解.
    【详解】
    依题意得x+1≥0,
    解得x≥-1
    故填:x≥-1
    此题主要考查二次根式的性质,解题的关键是熟知根号内被开方数为非负数.
    23、
    【解析】
    连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.
    【详解】
    解:连接OE,与DC交于点F,

    ∵四边形ABCD为矩形,
    ∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
    ∵OD∥CE,OC∥DE,
    ∴四边形ODEC为平行四边形,
    ∵OD=OC,
    ∴四边形OCED为菱形,
    ∴DF=CF,OF=EF,DC⊥OE,
    ∵DE∥OA,且DE=OA,
    ∴四边形ADEO为平行四边形,
    ∵AD=,AB=2,
    ∴OE=,CD=2,
    则S菱形OCED=OE•DC=××2=.
    故答案为:.
    本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)DE=2
    【解析】
    (1)根据已知条件得到四边形ABCD是平行四边形,根据AD∥BC证得∠DAE=∠F,∠D=∠DCF即可得到结论;
    (2)根据(1)的△ADE∽△FCE列式即可求出答案.
    【详解】
    (1)证明:∵ 四边形ABCD中,AB=CD,AD=BC,
    ∴ 四边形ABCD是平行四边形.
    ∴ AD∥BC.
    ∴ ∠DAE=∠F,∠D=∠DCF.
    ∴ △ADE∽△FCE.
    (2)解:∵四边形ABCD是平行四边形,且AB=1,
    ∴AB=CD=1.
    又∵△ADE∽△FCE,

    ∵AD=6,CF=2,

    ∴DE=2.
    此题考查平行四边形的判定与性质,相似三角形的判定与性质,是一道较为基础的题型.
    25、(1)5;(2)直线AC的解析式y=﹣x+;(3)见解析.
    【解析】
    (1)Rt△AOH中利用勾股定理即可求得菱形的边长;
    (2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;
    (3)根据S△ABC=S△AMB+S△BMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.
    【详解】
    (1)Rt△AOH中,

    所以菱形边长为5;
    故答案为5;
    (2)∵四边形ABCO是菱形,
    ∴OC=OA=AB=5,即C(5,0).
    设直线AC的解析式y=kx+b,函数图象过点A、C,得
    ,解得,
    直线AC的解析式;
    (3)设M到直线BC的距离为h,
    当x=0时,y=,即M(0,),,
    由S△ABC=S△AMB+SBMC=AB•OH=AB•HM+BC•h,
    ×5×4=×5×+×5h,解得h=,
    ①当0<t<时,BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,
    S=BP•HM=×(5﹣2t)=﹣t+;
    ②当2.5<t≤5时,BP=2t﹣5,h=,
    S=BP•h=×(2t﹣5)=t﹣,
    把S=3代入①中的函数解析式得,3=﹣t+,
    解得:t=,
    把S=3代入②的解析式得,3=t﹣,
    解得:t=.
    ∴t=或.
    本题考查了待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.
    26、纪念笔和记事本的单价分别为1元,6元.
    【解析】
    首先设纪念笔单价为x元,则记事本单价为(x-4)元,根据题意可得等量关系:30元买记事本的数量与用50元买纪念笔的数量相同,由等量关系可得方程,进而解答即可.
    【详解】
    解:设纪念笔单价为x元,则记事本的单价为(x-4)元.
    由题意,得:.
    解得:x=1.
    经检验x=1是原方程的解,且符合题意.
    ∴纪念笔的单价为1元,
    ∴记事本的单价:1-4=6(元).
    答:纪念笔和记事本的单价分别为1元,6元.
    此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
    题号





    总分
    得分
    A(吨)
    B(吨)
    合计(吨)
    C


    240
    D

    x
    260
    总计(吨)
    200
    300
    500

    相关试卷

    江苏省苏州市吴江青云中学2024年九年级数学第一学期开学综合测试试题【含答案】:

    这是一份江苏省苏州市吴江青云中学2024年九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省苏州市姑苏区振华学校2025届九上数学开学预测试题【含答案】:

    这是一份江苏省苏州市姑苏区振华学校2025届九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2025届江苏省苏州市姑苏区振华学校九年级数学第一学期开学达标检测试题【含答案】:

    这是一份2025届江苏省苏州市姑苏区振华学校九年级数学第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map