江苏省泰州市凤凰初级中学2024年数学九年级第一学期开学质量检测试题【含答案】
展开
这是一份江苏省泰州市凤凰初级中学2024年数学九年级第一学期开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是( )
A.B.2C.2D.4
2、(4分)某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是( )
A.平均数B.中位数C.众数D.方差
3、(4分)如图,在四边形中,下列条件不能判定四边形是平行四边形的是( )
A.B.
C.D.
4、(4分)八(1)班班长统计2017年5~12月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制出如下折线统计图,下列说法不正确的是( )
A.众数是58B.平均数是50
C.中位数是58D.每月阅读数量超过40本的有6个月
5、(4分)如图,在△ABC中,若AB=AC=6,BC=4,D是BC的中点,则AD的长等于( )
A.4B.2C.2D.4
6、(4分)计算(5﹣﹣2)÷(﹣)的结果为( )
A.﹣5B.5C.7D.﹣7
7、(4分)某区选取了10名同学参加兴隆台区“汉字听取大赛”,他们的年龄(单位:岁)记录如下:
这些同学年龄的众数和中位数分别是( )
A.15,15B.15,16C.3,3D.3,15
8、(4分)下列各组数据中能作为直角三角形的三边长的是( )
A.1,2,2B.1,1,C.4,5,6D.1,,2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.
10、(4分)如图,矩形ABCD 的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.
11、(4分)若把分式中的x,y都扩大5倍,则分式的值____________.
12、(4分)如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为 .
13、(4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去…若点, ,则点的坐标为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:2×÷3﹣(﹣2.
15、(8分)已知:线段 m、n 和∠
(1)求作:△ABC,使得 AB=m,BC=n,∠B=∠;
(2)作∠BAC 的平分线相交 BC 于 D.(以上作图均不写作法,但保留作图痕迹)
16、(8分)在平面直角坐标系中,直线(且)与轴交于点,过点作直线轴,且与交于点.
(1)当,时,求的长;
(2)若,,且轴,判断四边形的形状,并说明理由.
17、(10分)某校初中部三个年级共挑选名学生进行跳绳测试,其中七年级人,八年级人,九年级人,体育老师在测试后对测试成绩进行整理,得到下面统计图表.
(1)表格中的落在 组(填序号);
①; ②;③;④;⑤;⑥;⑦
(2)求这名学生的平均成绩;
(3)在本次测试中,八年级与九年级都只有位学生跳下,判断这两位学生成绩在自己所在年级参加测试学生中的排名,谁更考前?请简要说明理由.
18、(10分)问题:探究函数y=|x|﹣2的图象与性质.
小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.
下面是小华的探究过程,请补充完整:
(1)在函数y=|x|﹣2中,自变量x可以是任意实数;
(2)如表是y与x的几组对应值
①m等于多少;
②若A(n,2018),B(2020,2018)为该函数图象上不同的两点,则n等于多少;
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为多少;该函数图象与x轴围成的几何图形的面积等于多少;
(4)已知直线y1=x﹣与函数y=|x|﹣2的图象交于C,D两点,当y1≥y时,试确定x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于x的方程3x+a=x﹣7的根是正数,则a的取值范围是_____.
20、(4分)已知点是直线上的一个动点,若点到两坐标轴的距离相等,则点的坐标是__________.
21、(4分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.
22、(4分)若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
23、(4分)将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,反比例函数的图象与一次函数的图象交于点,,点的横坐标实数4,点在反比例函数的图象上.
(1)求反比例函数的表达式;
(2)观察图象回答:当为何范围时,;
(3)求的面积.
25、(10分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:
乙校成绩统计表
(1)在图①中,“80分”所在扇形的圆心角度数为;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.
26、(12分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
【详解】
∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选:B.
本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
2、C
【解析】
众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.
故选:C.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
3、C
【解析】
根据平行四边形的5种判定方法分别进行分析即可.
【详解】
A. 根据两组对边分别平行,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
B. 根据两组对边分别相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
C.不能判定判定四边形ABCD是平行四边形,故此选项符合题意;
D. 根据一组对边平行且相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
故选C.
此题考查平行四边形的判定,解题关键在于掌握判定定理
4、B
【解析】
根据众数的定义,可判断A;根据平均数的计算方法,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
【详解】
A. 出现次数最多的是58,众数是58,故A正确;
B.平均数为:,故B错误;
C. 由小到大顺序排列数据28,36,42,58,58,70,75,83,中位数是=58,故C正确;
D. 由折线统计图看出每月阅读量超过40本的有6个月,故D正确;
故选:B
此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据.
5、A
【解析】
根据等腰三角形的性质得到AD⊥BC,BD=BC=1,根据勾股定理计算即可.
【详解】
∵AB=AC,D是BC的中点,
∴AD⊥BC,BD=BC=1,
∴AD==4,
故选:A.
本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
6、C
【解析】
先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.
【详解】
解:原式=(﹣2﹣6)÷(﹣)
=﹣1÷(﹣)
=1.
故选:C.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
7、A
【解析】
根据众数的定义和中位数的定义求解即可,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:根据10名学生年龄人数最多的即为众数:15,
根据10名学生,第5,6名学生年龄的平均数即为中位数为:=15,故选A.
本题考查了众数和中位数的定义,解题的关键是牢记定义,并能熟练运用.
8、D
【解析】
根据勾股定理的逆定理对各选项进行逐一分析即可.
【详解】
解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;
C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;
D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.
故选D.
本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1:1
【解析】
以点A为原点,建立平面直角坐标系,则点B(3,1),C(3,0),D(2,1),如下图所示:
设直线AB的解析式为yAB=kx,直线CD的解析式为yCD=ax+b,
∵点B在直线AB上,点C、D在直线CD上,
∴1=3k, 解得:k= , ,
∴yAB=x, yCD=-x+3,
∴点P的坐标为( , ),
∴S△PBD :S△PAC= .
故答案是:1:1.
10、1
【解析】
由30°角直角三角形的性质求得,然后根据矩形的两条对角线相等且平分来求的长度.
【详解】
解:在矩形中,对角线,的交点为,
,,.
又∵点为边的中点,
,
,,
,
,
.
故答案为:1.
本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出的长是解此题的关键.题型较好,难度适中.
11、扩大5倍
【解析】
【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.
【详解】把分式中的x,y都扩大5倍得:
=,
即分式的值扩大5倍,
故答案为:扩大5倍.
【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.
12、
【解析】
试题分析:根据勾股定理即可求得结果.
由题意得,正方形M与正方形N的面积之和为
考点:本题考查的是勾股定理
点评:解答本题的关键是根据勾股定理得到最大正方形的面积等于正方形M、N的面积和.
13、(1,2)
【解析】
先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.
【详解】
∵AO= ,BO=2,
∴AB= ,
∴OA+AB1+B1C2=6,
∴B2的横坐标为:6,且B2C2=2,
∴B4的横坐标为:2×6=12,
∴点B2018的横坐标为:2018÷2×6=1.
∴点B2018的纵坐标为:2.
∴点B2018的坐标为:(1,2),
故答案是:(1,2).
考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
利用二次根式的乘除法则和完全平方公式计算.
【详解】
原式=2××× -(2-2+3)-2
=-1+2-2
=-1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
15、(1)见解析;(2)见解析.
【解析】
(1)先作出∠MBN=∠,然后在边BM上截取BA=m得到点A,在以A为圆心AC=n为半径画弧角AN于C,得到点C,连接AC,即可得到符合要求的图形.
(2)以点A为圆心,任意长为半径画弧,再以弧与角两边的交点为圆心,大于两弧交点的一半长为半径画弧,两弧的交点为E,连接AE,交BC于D,. AD就是所求∠BAC的角平分线.
【详解】
解:(1)如图所示的△ABC就是所要求作的图形.
(2)如图所示;
本题主要考查了作一个角等于已知角,作一条线段等于已知线段的作法,作已知角的角平分线,都是基本作图,需要熟练掌握.
16、(1)BC=1;(2)四边形OBDA是平行四边形,见解析.
【解析】
(1)理由待定系数法求出点D坐标即可解决问题;
(2)四边形OBDA是平行四边形.想办法证明BD=OA=3即可解决问题.
【详解】
解:(1)当m=-2,n=1时,直线的解析式为y=-2x+1,
当x=1时,y=-1,
∴B(1,-1),
∴BC=1.
(2)结论:四边形OBDA是平行四边形.
理由:如图,∵BD∥x轴,B(1,1-m),D(4,3+m),
∴1-m=3+m,
∴m=-1,
∵B(1,m+n),
∴m+n=1-m,
∴n=3,
∴直线y=-x+3,
∴A(3,0),
∴OA=3,BD=3,
∴OA=BD,OA∥BD,
∴四边形OBDA是平行四边形.
本题考查一次函数图象上点的特征,平行四边形的判断等知识,解题的关键是熟练掌握待定系数法,灵活运用所学知识解决问题,属于中考常考题型.
17、(1)④;(2)80;(3)八年级得分的那位同学名次较靠前,理由详见解析.
【解析】
(1)根据题意,七年级由40人,则中位数应该在第20和21个人取平均值,即可得到答案;
(2)利用加权平均数,即可求出100名学生的平均成绩;
(3)由题意,八九年级人数一样,则比较中位数,即可得到答案.
【详解】
解:根据直方图可知,七年级第20和第21个人都落在;
故答案为:④.
(2)这名学生的平均成绩为:
;
(3)八年级得分的那位同学名次较靠前,
理由如下:
依题意得:八年级和九年级被挑选的学生人数相同,分别把两个年级的成绩按从高到低排列,由两个年级的中位数可知,八年级跳下的学生在该年级排名中上,而八年级跳下的学生在该年级排名中下,八年级得分的那位同学名次较靠前.
本题考查了众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
18、(2)①m=1;②﹣2020;(1)该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是4;(4)当y1≥y时x的取值范围是﹣1≤x≤1.
【解析】
(2)①把x=1代入y=|x|﹣2,即可求出m;
②把y=2018代入y=|x|﹣2,即可求出n;
(1)画出该函数的图象即可求解;
(4)在同一平面直角坐标系中画出函数y1=x﹣与函数y=|x|﹣2的图象,根据图象即可求出y1≥y时x的取值范围.
【详解】
(2)①把x=1代入y=|x|﹣2,得m=1;
②把y=2018代入y=|x|﹣2,得2018=|x|﹣2,
解得x=﹣2020或2020,
∵A(n,2018),B(2020,2018)为该函数图象上不同的两点,
∴n=﹣2020;
(1)该函数的图象如图,
由图可得,该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是×4×2=4;
(4)在同一平面直角坐标系中画出函数y1=x﹣与函数y=|x|﹣2的图象,
由图形可知,当y1≥y时x的取值范围是﹣1≤x≤1.
故答案为:(2)①m=1;②﹣2020;(1)该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是4;(4)当y1≥y时x的取值范围是﹣1≤x≤1.
本题考查了一次函数的图象与性质,一次函数图象上点的坐标特征.正确画出函数的图象,利用数形结合思想是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a<﹣7
【解析】
求出方程的解,根据方程的解是正数得出>0,求出即可.
【详解】
解:3x+a=x-7
3x-x=-a-7
2x=-a-7
x=,
∵>0,
∴a<-7,
故答案为:a<-7
本题考查解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.
20、 或
【解析】
到两坐标轴距离相等,说明此点的横纵坐标的绝对值相等,那么x=y,或x=-y.据此作答.
【详解】
设 (x,y).
∵点为直线y=−2x+4上的一点,
∴y=−2x+4.
又∵点到两坐标轴距离相等,
∴x=y或x=−y.
当x=y时,解得x=y=,
当x=−y时,解得y=−4,x=4.
故点坐标为 或
故答案为: 或
考查一次函数图象上点的坐标特征,根据点到两坐标轴的距离相等,列出方程求解即可.
21、1
【解析】
根据圆心角=360°×百分比计算即可;
【详解】
解:“世界之窗”对应扇形的圆心角=360°×(1-10%-30%-20%-15%)=1°,
故答案为1.
本题考查的是扇形统计图的综合运用,读懂统计图是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.
22、一
【解析】
试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
∴k﹣1<0且k+1<0, 解得:k<﹣1,
∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
考点:一次函数的性质
23、126°
【解析】
直接利用翻折变换的性质以及平行线的性质分析得出答案.
【详解】
解:如图,由题意可得:
∠ABC=∠BCE=∠BCA=27°,
则∠ACD=180°-27°-27°=126°.
故答案为:126°.
本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)反比例函数的表达式为y=;(2)x<﹣2或0<x<2时,y1>y2;(3)△PAB的面积为1.
【解析】
(1)利用一次函数求得B点坐标,然后用待定系数法求得反函数的表达式即可;
(2)观察图象可知,反函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,则S△AOP=S△BOP,即S△PAB=2S△AOP,再求出点P的坐标,利用待定系数法求得直线AP的函数解析式,得到点C的坐标,然后根据S△AOP=S△AOC+S△POC,即可求得结果.
【详解】
(1)将x=2代入y2=得:y=1,
∴B(2,1),
∴k=xy=2×1=2,
∴反比例函数的表达式为y=;
(2)由正比例函数和反比例函数的对称性可知点A的横坐标为﹣2.
∵y1>y2,
∴反比例函数图象位于正比例函数图象上方,
∴x<﹣2或0<x<2;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图,
∵点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP,
y1=中,当x=1时,y=2,
∴P(1,2),
设直线AP的函数关系式为y=mx+n,
把点A(﹣2,﹣1)、P(1,2)代入y=mx+n,
得,
解得m=3,n=1,
故直线AP的函数关系式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
=OC•AR+OC•PS
=×3×2+×3×1
=,
∴S△PAB=2S△AOP=1.
25、(1)54°;(2)见解析;(3)85;(4)甲班20同名同学的成绩比较整齐.
【解析】
试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;
(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;
(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;
(4)根据方差的意义即可做出评价.
解:(1)6÷30%=20,
3÷20=15%,
360°×15%=54°;
(2)20﹣6﹣3﹣6=5,统计图补充如下:
(3)20﹣1﹣7﹣8=4,=85;
(4)∵S甲2<S乙2,
∴甲班20同名同学的成绩比较整齐.
26、见解析.
【解析】
根据中位线定理和已知,易证明△NMP是等腰三角形,根据等腰三角形的性质即可得到结论.
【详解】
解:证明:∵是中点,是中点,
∴是的中位线,
∴,
∵是中点,是中点,
∴是的中位线,
∴,
∵,
∴,
∴是等腰三角形,
∴.
此题主要考查了三角形中位线定理,以及等腰三角形的判定与性质,熟练掌握等腰三角形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
型号
22.5
23
23.5
24
24.5
销量(双)
5
10
15
8
3
年龄(单位:岁)
13
14
15
16
17
人数
2
2
3
2
1
年级
平均成绩
中位数
众数
七年级
78.5
m
85
八年级
80
78
82
九年级
82
85
84
x
…
﹣3
﹣2
﹣1
0
1
2
3
…
y
…
1
0
﹣1
﹣2
﹣1
0
m
…
分数(分)
人数(人)
70
7
80
90
1
100
8
相关试卷
这是一份江苏省如皋市常青初级中学2024年数学九年级第一学期开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省泰州市姜堰区实验初级中学九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省泰州市周庄初级中学九年级数学第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。