江苏省泰州市姜堰区张甸初级中学2024年九上数学开学经典试题【含答案】
展开这是一份江苏省泰州市姜堰区张甸初级中学2024年九上数学开学经典试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若函数有意义,则
A. B. C. D.
2、(4分)把函数与的图象画在同一个直角坐标系中,正确的是( )
A.B.
C.D.
3、(4分)下列结论中,不正确的是( )
A.对角线互相垂直的平行四边形是菱形
B.对角线相等的平行四边形是矩形
C.一组对边平行,一组对边相等的四边形是平行四边形
D.对角线互相垂直的四边形面积等于对角线乘积的一半
4、(4分)如图,这组数据的组数与组距分别为( )
A.5,9B.6,9
C.5,10D.6,10
5、(4分)下列所述图形中,既是中心对称图形,又是轴对称图形的是( )
A.矩形B.平行四边形C.正五边形D.正三角形
6、(4分)如图,□ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为( )
A.1B.2C.3D.4
7、(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.甲B.乙C.丙D.丁
8、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为( )
A.20 LB.25 LC.27LD.30 L
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
10、(4分)若分式的值与1互为相反数,则x的值是__________.
11、(4分)当a=______时,最简二次根式与是同类二次根式.
12、(4分)请你写出一个有一根为0的一元二次方程:______.
13、(4分)化简=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数的图象经过,两点.
(1)求这个一次函数的解析式;
(2)试判断点是否在这个一次函数的图象上;
(3)求此函数图象与轴,轴围成的三角形的面积.
15、(8分)如图,矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形.
16、(8分)如图,在平行四边形ABCD中,DB=DC,AE⊥BD于点E.若,求的度数.
17、(10分)(1)计算:(1+2)(﹣)﹣(﹣)2
(2)因式分解:2mx2﹣8mxy+8my2
18、(10分)某文具店准备购进A、B两种型号的书包共50个进行销售,两种书包的进价、售价如下表所示:
购进这50个书包的总费用不超过7300元,且购进B型书包的个数不大于A型书包个数的.
(1)该文具店有哪几种进货方案?
(2)若该文具店购进的50个书包全部售完,则该文具店采用哪种进货方案,才能获得最大利润?最大利润是多少?(利润=售价﹣进价)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,□OABC的顶点O,A的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为___.
20、(4分)小明利用公式计算5个数据的方差,则这5个数据的标准差的值是_____.
21、(4分)计算:=_______.
22、(4分)如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.
23、(4分)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.
(1)求证:;
(2)求证:;
(3)当时,求的长.
25、(10分)分解因式
(1)
(2)
26、(12分)2019年3月21日,长春市遭遇了一次大量降雪天气,市环保系统出动了多辆清雪车连夜清雪,已知一台大型清雪车比一台小型清雪车每小时多清扫路面6千米,一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同.求一台小型清雪车每小时清扫路面的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
解:由题意得:x﹣1≠0,解得x≠1.故选D.
2、D
【解析】
根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.
【详解】
解:函数中,所以其图象过一、三象限,函数中,所以其图象的两支分别位于第一、三象限,符合的为D选项.
故选D.
本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键.
3、C
【解析】
由菱形和矩形的判定得出A、B正确,由等腰梯形的判定得出C不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D正确,即可得出结论.
【详解】
A.∵对角线互相垂直的平行四边形是菱形,∴A正确;
B.∵对角线相等的平行四边形是矩形,∴B正确;
C.∵一组对边平行,一组对边相等的四边形是平行四边形或等腰梯形,∴C不正确;
D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D正确;
故选:C.
考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形/矩形和等腰梯形的判定方法是解题的关键.
4、D
【解析】
通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.
【详解】
解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,
故选:D.
考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.
5、A
【解析】
试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合.
考点:轴对称图形与中心对称图形.
6、B
【解析】
利用平行四边形性质得∠DAE=∠BEA,再利用角平分线性质证明△BAE是等腰三角形,得到BE=AB即可解题.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC=5,AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BEA=∠BAE,
∴BE=AB=3,
∴CE=BC-BE=5-3=2,
故选B.
本题考查了平行四边形的性质,等腰三角形的判定,属于简单题,熟悉平行线加角平分线得到等腰三角形这一常用解题模型是解题关键.
7、D
【解析】
【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】∵,
∴从乙和丁中选择一人参加比赛,
∵,
∴选择丁参赛,
故选D.
【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
8、B
【解析】
试题分析:由图形可得点(4,20)和(12,30),然后设直线的解析式为y=kx+b,代入可得,解得,得到函数的解析式为y=x+15,代入x=8可得y=25.
故选:B
点睛:此题主要考察了一次函数的图像与性质,先利用待定系数法求出函数的解析式,然后代入可求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4.4×1
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:44000000=4.4×1,
故答案为4.4×1.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、-1
【解析】
根据相反数的性质列出分式方程求解即可.
【详解】
∵分式的值与1互为相反数
∴
解得
经检验,当时,,所以是方程的根
故答案为:.
本题考查了分式方程的运算问题,掌握分式方程的解法、相反数的性质是解题的关键.
11、1.
【解析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.
【详解】
解: ∵最简二次根式与是同类二次根式,
∴a﹣2=10﹣2a, 解得:a=1
故答案为:1.
本题考查同类二次根式.
12、
【解析】
根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.
【详解】
可以是,=0等.
故答案为:
本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.
13、
【解析】
,
故答案为
考点:分母有理化
三、解答题(本大题共5个小题,共48分)
14、(1);(2)不在这个一次函数的图象上;(3)函数图象与轴,轴围成的三角形的面积=4.
【解析】
(1)利用待定系数法求一次函数解析式;
(2)利用一次函数图象上点的坐标特征进行判断;
(3)先利用一次函数解析式分别求出一次函数与坐标轴的两交点坐标,然后利用三角形面积公式求解.
【详解】
(1)设一次函数解析式为,
把,代入得,解得,
所以一次函数解析式为;
(2)当时,,
所以点不在这个一次函数的图象上;
(3)当时,,则一次函数与轴的交点坐标为,
当时,,解得,则一次函数与轴的交点坐标为,
所以此函数图象与轴,轴围成的三角形的面积.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
15、见解析
【解析】
先证明四边形AMCN为平行四边形,再根据对角线互相垂直的平行四边形是菱形即可证得结论.
【详解】
是矩形,则,
,
而是的垂直平分线,
则,,
而,
,
,四边形为平行四边形,
又,
四边形是菱形.
本题考查了矩形的性质,平行四边形的判定,菱形的判定等,正确把握相关的性质定理与判定定理是解题的关键.
16、68°
【解析】
根据直角三角形的性质求出,然后根据平行线的性质可得,最后根据等边对等角和三角形的内角和定理即可求出的度数.
【详解】
解:∵
∴
∴
∵四边形是平行四边形
∴
∵
∴
此题考查的是平行四边形的性质、等腰三角形的性质和直角三角形的性质,掌握平行四边形的性质、等边对等角和直角三角形的两个锐角互余是解决此题的关键.
17、(1)﹣+1;(1)1m(x﹣1y)1.
【解析】
(1)利用平方差公式,完全平方公式进行计算即可
(1)先提取公因式1m,再对余下的多项式利用完全平方公式继续分解.
【详解】
(1)原式=﹣+6﹣1 ﹣(1﹣1+3)
=﹣+6﹣1﹣5+1
=﹣+1;
(1)原式=1m(x﹣4xy+4y)
=1m(x﹣1y)1.
此题考查提公因式法与公式法的综合运用,二次根式的混合运算,解题关键在于掌握运算法则
18、(1)有4种进货方案,分别是:①A,20个,B,30个;②A,21个,B,29个;③A,22个,B28个;④A,1个,B27个;(2)购进A型1个,B型27个获利最大,最大利润为3元.
【解析】
(1)设购进A型书包x个,则B型(50﹣x)个,由题意得关于x的不等式组,解得x的范围,再根据x为正整数,可得x及(50﹣x)的值,则进货方案可得.
(2)设获利y元,根据利润等于(A的售价﹣进价)×A的购进数量+(B的售价﹣进价)×B的购进数量,列出函数关系式,根据一次函数的性质可得答案.
【详解】
解:(1)设购进A型书包x个,则B型(50﹣x)个,
由题意得: ,
解得:20≤x≤1.
∴A型书包可以购进20,21,22,1个;B型书包可以购进(50﹣x)个,即30,29,28,27个.
答:有4种进货方案,分别是:①A,20个,B,30个;②A,21个,B,29个;③A,22个,B28个;④A,1个,B27个.
(2)设获利y元,由题意得:
y=(300﹣200)x+(150﹣100)(50﹣x)
=100x+50(50﹣x)
=50x+2.
∵50>0,
∴y随x的增大而增大.
∴当x=1时,y最大,y最大值=50×1+2=3.
答:购进A型1个,B型27个获利最大,最大利润为3元.
本题考查了一次函数实际应用问题的方案设计和选择问题,根据题意列出相关的不等式,利用一次函数性质选取最佳方案即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=2x﹣1.
【解析】
将▱OABC的面积分成相等的两部分,所以直线必过平行四边形的中心D,由B的坐标即可求出其中心坐标D,设过直线的解析式为y=kx+b,把D和Q的坐标代入即可求出直线解析式即可.
【详解】
解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,
平行四边形OABC的对称中心D(4,1),
设直线MD的解析式为y=kx+b,
∴
即,
∴该直线的函数表达式为y=2x﹣1,
因此,本题正确答案是: y=2x﹣1.
本题考察平行四边形与函数的综合运用,能够找出对称中心是解题关键.
20、
【解析】
先根据平均数的定义求出,再代入公式求出方差,然后求出方差的算术平方根即标准差的值.
【详解】
解:根据题意知,,
则,
.
故答案为.
本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了平均数与方差,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、3
【解析】
先把化成,然后再合并同类二次根式即可得解.
【详解】
原式=2.
故答案为
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
22、a>b>d>c
【解析】
设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.
【详解】
因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),
所以,a>b>d>c.
本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.
23、45°
【解析】
如图,连接OA,因OA=OC,可得∠ACO=∠OAC=45°,根据三角形的内角和公式可得∠AOC=90°,再由圆周角定理可得∠B=45°.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)证明见解析;(3)PH=.
【解析】
(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先过B作BQ⊥PH,垂足为Q,易证得△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH.
(3)首先设AE=x,则EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的长,易证得△DPH∽△AEP,然后由相似三角形的对应边成比例,求得答案.
【详解】
(1)证明:∵PE=BE,
∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.
又∵四边形ABCD为正方形
∴AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:过B作BQ⊥PH,垂足为Q,
由(1)知,∠APB=∠BPH,
在△ABP与△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,
∴△BCH和△BQH是直角三角形,
在Rt△BCH与Rt△BQH中,
,
∴Rt△BCH≌Rt△BQH(HL),
∴CH=QH,
∴AP+HC=PH.
(3)解:∵AP=2,
∴PD=AD-AP=8-2=6,
设AE=x,则EP=8-x,
在Rt△AEP中,AE2+AP2=PE2,
即x2+22=(8-x)2,
解得:x=,
∵∠A=∠D=∠ABC=90°,
∴∠AEP+∠APE=90°,
由折叠的性质可得:∠EPG=∠ABC=90°,
∴∠APE+∠DPH=90°,
∴∠AEP=∠DPH,
∴△DPH∽△AEP,
∴,
∴,
解得:DH=.
∴PH=
此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握折叠前后图形的对应关系、注意掌握方程思想的应用,注意准确作出辅助线是解此题的关键.
25、(1);(2)
【解析】
(1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.
【详解】
解:(1)
=
=
(2)
=
=
=
本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.
26、12千米
【解析】
设小型清雪车每小时清扫路面的长度为x千米,则大型清雪车每小时清扫路面的长度为(x+6)千米,根据大型清雪车清扫路面90千米与小型清雪车清扫路面60千米所用的时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设小型清雪车每小时清扫路面的长度为x千米,则大型清雪车每小时清扫路面的长度为(x+6)千米,根据题意得:
解得:x=12,经检验,x=12是原方程的解,且符合题意.
答:小型清雪车每小时清扫路面的长度为12千米.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数(环)
9.14
9.15
9.14
9.15
方差
6.6
6.8
6.7
6.6
书包型号
进价(元/个)
售价(元/个)
A型
200
300
B型
100
150
相关试卷
这是一份江苏省姜堰市张甸初级中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省姜堰区张甸、港口初级中学2025届数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省泰州市姜堰区实验初级中学九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。