|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题【含答案】01
    江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题【含答案】02
    江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题【含答案】

    展开
    这是一份江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)将正方形ABCD与等腰直角三角形EFG如图摆放,若点M、N刚好是AD的三等分点,下列结论正确的是( )
    ①△AMH≌△NME;②;③GH⊥EF;④S△EMN:S△EFG=1:16
    A.①②③④B.①②③C.①③④D.①②④
    2、(4分)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )
    A.4cmB.3cmC.2cmD.1cm
    3、(4分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有( )
    A.1个B.2个C.3个D.4个
    4、(4分)某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是( )
    A.甲B.乙C.丙D.丁
    5、(4分)甲,乙,丙,丁四人进行射击测试,记录每人10次射击成情,得到各人的射击成绩方差如表中所示,则成绩最稳定的是( )
    A.甲B.乙C.丙D.丁
    6、(4分)如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是( )
    A.三角形B.菱形C.矩形D.正方形
    7、(4分)下列各式成立的是( )
    A.B.C.D.
    8、(4分)一组数据:2,3,4,x中若中位数与平均数相等,则数x不可能是( )
    A.1B.2C.3D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于x的一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,则m的取值范围为_____.
    10、(4分)一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x枚,白棋有y枚.如果从盒中随机取出一枚为黑棋的概率是,那么y=___.(请用含x的式子表示y)
    11、(4分)式子在实数范围内有意义,则x的取值范围是_____.
    12、(4分)为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要从中选一位发挥稳定的选手参加决赛你认为派__________________去参赛更合适(填“甲”或“乙”或“丙”或“丁”)
    13、(4分)如图,在平面直角坐标系中,矩形的边一条动直线分别与将于点,且将矩形分为面积相等的两部分,则点到动直线的距离的最大值为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.
    求证:(1)△BEG≌△DFH;
    (2)四边形GEHF是平行四边形.
    15、(8分)我市飞龙商贸城有甲、乙两家商店均出售白板和白板笔,并且标价相同,每块白板50元,每支白板笔4元.某校计划购买白板30块,白板笔若干支(白板笔数不少于90支),恰好甲、乙两商店开展优惠活动,甲商店的优惠方式是白板打9折,白板笔打7折;乙商店的优惠方式是白板及白板笔都不打折,但每买2块白板送白板笔5支.
    (1)以x(单位:支)表示该班购买的白板笔数量,y(单位:元)表示该班购买白板及白板笔所需金额.分别就这两家商店优惠方式写出y关于x的函数解析式;
    (2)请根据白板笔数量变化为该校设计一种比较省钱的购买方案.
    16、(8分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。
    (1)小李从乙地返回甲地用了多少小时?
    (2)求小李出发小时后距离甲地多远?
    17、(10分)阅读下列一段文字,然后回答下列问题:
    已知平面内两点P1(x1,y1),P2(x2,y2),其两点间的距离。例如:已知P(3,1),Q(1,-2),则这两点间的距离.特别地,如果两点M(x1,y1),N(x2,y2),所在的直线与坐标轴重合或平行于坐标轴或者垂直于坐标轴,那么这两点间的距离公式可简化为或。
    (1)已知A(2,3),B(-1,-2),则A,B两点间的距离为_________;
    (2)已知M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,则M,N两点间的距离为_________;
    (3)在平面直角坐标系中,已知A(0,4),B(4,2),在x轴上找点P,使PA+PB的长度最短,求出点P的坐标及PA+PB的最短长度.
    18、(10分)某区对即将参加中考的初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:
    (1)本次调查的样本为 ,样本容量为 ;
    (2)在频数分布表中,组距为 ,a= ,b= ,并将频数分布直方图补充完整;
    (3)若视力在4.6以上(含4.6)均属正常,计算抽样中视力正常的百分比.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)用反证法证明:“三角形中至少有两个锐角”时,首先应假设这个三角形中_____.
    20、(4分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.
    21、(4分)将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.

    22、(4分)函数的自变量的取值范围是______.
    23、(4分)如图,点A的坐标为,点B在直线上运动则线段AB的长度的最小值是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
    该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
    (1)该商场计划购进A,B两种品牌的教学设备各多少套?
    (2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
    25、(10分)计算:
    (1);
    (2)先化简,再求值,;其中,x2,y2.
    26、(12分)解下列方程
    (1)
    (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    利用三角形全等和根据题目设未知数,列等式解答即可.
    【详解】
    解:设AM=x,
    ∵点M、N刚好是AD的三等分点,
    ∴AM=MN=ND=x,
    则AD=AB=BC=3x,
    ∵△EFG是等腰直角三角形,
    ∴∠E=∠F=45°,∠EGF=90°,
    ∵四边形ABCD是正方形,
    ∴∠A=∠ABC=∠BGN=∠ABF=90°,
    ∴四边形ABGN是矩形,
    ∴∠AHM=∠BHF=∠AMH=∠NME=45°,
    ∴△AMH≌△NMH(ASA),故①正确;
    ∵∠AHM=∠AMH=45°,
    ∴AH=AM=x,
    则BH=AB﹣AH=2x,
    又Rt△BHF中∠F=45°,
    ∴BF=BH=2x,=,故②正确;
    ∵四边形ABGN是矩形,
    ∴BG=AN=AM+MN=2x,
    ∴BF=BG=2x,
    ∵AB⊥FG,
    ∴△HFG是等腰三角形,
    ∴∠FHB=∠GHB=45°,
    ∴∠FHG=90°,即GH⊥EF,故③正确;
    ∵∠EGF=90°、∠F=45°,
    ∴EG=FG=BF+BG=4x,
    则S△EFG=•EG•FG=•4x•4x=8x2,
    又S△EMN=•EN•MN=•x•x=x2,
    ∴S△EMN:S△EFG=1:16,故④正确;
    故选A.
    本题主要考察三角形全等证明的综合运用,掌握相关性质是解题关键.
    2、C
    【解析】
    连接、过作于,先求出、值,再求出、值,求出、值,代入求出即可.
    【详解】
    连接、,过作于
    ∵在中,,,
    ∴,
    ∴在中,
    ∴在中,

    ∴,
    ∵的垂直平分线

    同理


    ∴在中,

    同理

    故选:C.
    本题考查垂直平分线的性质、含直角三角形的性质,利用特殊角、垂直平分线的性质添加辅助线是解题关键,通过添加的辅助线将复杂问题简单化,更容易转化边.
    3、C
    【解析】
    直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.
    【详解】
    ①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.
    故选:.
    此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
    4、B
    【解析】
    从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.
    【详解】
    解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,
    因此要选择一名成绩高且发挥稳定的学生参赛,选择乙,
    故选B.
    5、D
    【解析】
    根据方差的性质即可判断.
    【详解】
    ∵丁的方差最小,故最稳定,
    选D.
    此题主要考查方差的应用,解题的关键是熟知方差的性质.
    6、B
    【解析】
    此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.
    【详解】
    由题意可得:四边形的四边形相等,故展开图一定是菱形.
    故选B.
    此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.
    7、D
    【解析】
    直接利用二次根式的性质分别化简得出答案.
    【详解】
    解:A、,故此选项错误;
    B、,故此选项错误;
    C、,故此选项错误;
    D、,正确.
    故选:D.
    此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
    8、B
    【解析】
    因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.
    【详解】
    (1)将这组数据从小到大的顺序排列为2,3,x,4,
    处于中间位置的数是3,x,
    那么由中位数的定义可知,这组数据的中位数是(3+x)÷2,
    平均数为(2+3+4+x)÷4,
    ∴(3+x)÷2=(2+3+4+x)÷4,
    解得x=3,大小位置与3对调,不影响结果,符合题意;
    (2)将这组数据从小到大的顺序排列后2,3,4,x,
    中位数是(3+4)÷2=3.1,
    此时平均数是(2+3+4+x)÷4=3.1,
    解得x=1,符合排列顺序;
    (3)将这组数据从小到大的顺序排列后x,2,3,4,
    中位数是(2+3)÷2=2.1,
    平均数(2+3+4+x)÷4=2.1,
    解得x=1,符合排列顺序.
    ∴x的值为1、3或1.
    故选B.
    本题考查的知识点是结合平均数确定一组数据的中位数,解题关键是要明确中位数的值与大小排列顺序有关.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、﹣1<m<
    【解析】
    根据一次函数y=kx+b(k≠0)的图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
    【详解】
    解:由一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,知
    m+1>0,且2m﹣3<0,
    解得,﹣1<m<.
    故答案为:﹣1<m<.
    本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.
    10、3x.
    【解析】
    根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.
    【详解】
    ∵从盒中随机取出一枚为黑棋的概率是,
    ∴,
    整理,得:y=3x,
    故答案为:3x.
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
    11、x≤1
    【解析】
    二次根式的被开方数是非负数.
    【详解】
    解:依题意,得
    1﹣x≥0,
    解得,x≤1.
    故答案是:x≤1.
    考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    12、甲
    【解析】
    根据方差的定义,方差越小数据越稳定即可求解.
    【详解】
    解:∵s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,
    而1.5<2.6<3.5<3.68,
    ∴甲的成绩最稳定,
    ∴派甲去参赛更好,
    故答案为甲.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    13、
    【解析】
    设M,N为CO,EF中点, 点到动直线的距离为ON,求解即可.
    【详解】

    ∴SOABC=12
    ∵将矩形分为面积相等的两部分
    ∴SCEOF=×(CE+OF)×2=6
    ∴CE+OF=6
    设M,N为CO,EF中点,
    ∴MN=3
    点到动直线的距离的最大值为ON=
    故答案.
    本题考查的是的动点问题,熟练掌握最大距离的算法是解题的关键
    三、解答题(本大题共5个小题,共48分)
    14、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;
    (2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥DC,
    ∴∠ABE=∠CDF,
    ∵AG=CH,
    ∴BG=DH,
    在△BEG和△DFH中,

    ∴△BEG≌△DFH(SAS);
    (2)∵△BEG≌△DFH(SAS),
    ∴∠BEG=∠DFH,EG=FH,
    ∴∠GEF=∠HFB,
    ∴GE∥FH,
    ∴四边形GEHF是平行四边形.
    此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
    15、(1)到甲商店购买所需金额为: y=2.8x+1350;到乙商店购买所需金额为:y=4x+1200;(2)购买白板笔在多于1支时到甲商店,少于1支时到乙商店,恰好购买1支时到甲商店和到乙商店一样
    【解析】
    (1)根据总价=单价×数量的关系,分别列出到甲、乙两商店购买所需金额y与白板笔数量x的关系式,化简即得y与x的一次函数关系式;
    (2)根据两个商店购买的钱数,分别由甲大于乙,甲等于乙,甲小于乙列出一次不等式求解即可.
    【详解】
    (1)到甲商店购买所需金额为:y=50×0.9×30+4×0.7x=2.8x+1350,即y=2.8x+1350,
    到乙商店购买30块白板可获赠=75支白板笔,实际应付款y=50×30+4(x-75)=4x+1200,即y=4x+1200.
    (2)由2.8x+1350<4x+1200解得x>1,
    由2.8x+1350=4x+1200解得x=1,
    由2.8x+1350>4x+1200解得x<1.
    答:购买白板笔多于1支时到甲商店,少于1支时到乙商店,恰好购买1支时到甲商店和到乙商店一样.
    考查了一次函数的实际应用,一次不等式的应用,以及分情况讨论的问题,掌握一次函数和一次不等式之间的关系是解题的关键.
    16、(1)小时;(2)小李出发小时后距离甲地千米;
    【解析】
    (1)根据题意可以得到小李从乙地返回甲地用了多少小时;
    (2)根据题意可以求得小李返回时对应的函数解析式,从而可以求得小李出发5小时后距离甲地的距离;
    【详解】
    解:(1)由题意可得, (小时),
    答:小李从乙地返回甲地用了小时;
    (2)设小李返回时直线解析式为,
    将分别代入得, ,解得,,
    ,当时,,
    答:小李出发小时后距离甲地千米;
    此题考查一次函数的应用,解题关键在于列出方程
    17、 (1);(2)5;(3) PA+PB的长度最短时,点P的坐标为(,0),PA+PB的最短长度为.
    【解析】
    (1)直接利用两点之间距离公式直接求出即可;
    (2)根据题意列式计算即可;
    (3)利用轴对称求最短路线方法得出P点位置,进而求出PA+PB的最小值.
    【详解】
    (1) (1)∵A(2,3),B(-1,-2),
    ∴A,B两点间的距离为: ;
    (2) ∵M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,
    则M,N两点间的距离为3-(-2)=5;
    (3)如图,作点A关于x轴的对称点A′,连接A′B与x轴交于点P,此时PA+PB最短
    设A′B的解析式为y=kx+b
    将A′(0,-4),B(4,2)代入y=kx+b得
    解得
    ∴直线设A′B的解析式为
    令y=0得
    ∴P(0,).
    ∵PA′=PA
    ∴PA+PB=PA′+PB=A′B=
    ∴PA+PB的长度最短时,点P的坐标为(,0),PA+PB的最短长度为.
    考查了利用轴对称求最值问题以及两点之间距离公式,正确转化代数式为两点之间距离问题是解题关键.
    18、(1)从中抽取的200名即将参加中考的初中毕业生的视力;200;(2)0.3;60;0.05,见解析;(3)70%.
    【解析】
    (1)根据样本的概念、样本容量的概念解答;
    (2)根据组距的概念求出组距,根据样本容量和频率求出a,根据样本容量和频数求出b,将频数分布直方图补充完整;
    (3)根据频数分布直方图求出抽样中视力正常的百分比.
    【详解】
    (1)样本容量为:20÷0.1=200,
    本次调查的样本为从中抽取的200名即将参加中考的初中毕业生的视力,
    故答案为:从中抽取的200名即将参加中考的初中毕业生的视力;200;
    (2)组距为0.3,
    a=200×0.3=60,
    b=10÷200=0.05,
    故答案为:0.3;60;0.05;
    频数分布直方图补充完整如图所示;
    (3)抽样中视力正常的百分比为:×100%=70%.
    本题考查的是读频数分布直方图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、三角形三个内角中最多有一个锐角
    【解析】
    “至少有两个”的反面为“最多有一个”,据此直接写出逆命题即可.
    【详解】
    ∵至少有两个”的反面为“最多有一个”,而反证法的假设即原命题的逆命题正确;
    ∴应假设:三角形三个内角中最多有一个锐角.
    故答案为:三角形三个内角中最多有一个锐角
    本题考查了反证法,注意逆命题的与原命题的关系.
    20、2
    【解析】
    设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
    【详解】
    作MG⊥DC于G,如图所示:
    设MN=y,PC=x,
    根据题意得:GN=2,MG=|10-1x|,
    在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
    即y1=21+(10-1x)1.
    ∵0<x<10,
    ∴当10-1x=0,即x=2时,y1最小值=12,
    ∴y最小值=2.即MN的最小值为2;
    故答案为:2.
    本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
    21、126°
    【解析】
    直接利用翻折变换的性质以及平行线的性质分析得出答案.
    【详解】
    解:如图,由题意可得:
    ∠ABC=∠BCE=∠BCA=27°,
    则∠ACD=180°-27°-27°=126°.
    故答案为:126°.
    本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.
    22、x>
    【解析】
    根据分式、二次根式有意义的条件,确定x的范围即可.
    【详解】
    依题意有2x-3>2,
    解得x>.
    故该函数的自变量的取值范围是x>.
    故答案为:x>.
    本题考查的知识点为:分式有意义,分母不为2.二次根式有意义,被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+23中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-2.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
    23、
    【解析】
    当线段AB最短时,直线AB与直线垂直,根据勾股定理求得AB的最短长度.
    【详解】
    解:当线段AB最短时,直线AB与直线垂直,
    过点A作直线l,
    因为直线是一、三象限的角平分线,
    所以,
    所以,
    所以,
    ,即,
    所以.
    故答案是:.
    考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,熟知垂线段最短是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) A,B两种品牌的教学设备分别为20套,30套; (2) 至多减少1套.
    【解析】
    (1)设A品牌的教学设备x套,B品牌的教学设备y套,根据题意可得方程组,解方程组即可求得商场计划购进A,B两种品牌的教学设备的套数;
    (2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意得不等式1.5(20-a)+1.2(30+1.5a)≤69,解不等式即可求得答案.
    【详解】
    (1)设A品牌的教学设备x套,B品牌的教学设备y套,由题意,得

    解得:.
    答:该商场计划购进A品牌的教学设备20套,B品牌的教学设备30套;
    (2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意,得
    1.5(20-a)+1.2(30+1.5a)≤69,
    解得:a≤1.
    答:A种设备购进数量至多减少1套.
    25、(1);(2)2.
    【解析】
    (1)根据二次根式和零指数幂进行化简,再进行加减运算即可得到答案;
    (2)先根据平方差公式对进行化简,再代入x2,y2,计算即可得到答案.
    【详解】
    (1)
    =
    =
    =
    (2)
    =
    =
    =
    将x2,y2代入得到=2.
    本题考查平方差公式、二次根式和零指数幂,解题的关键是掌握平方差公式、二次根式和零指数幂.
    26、(1),;(2),
    【解析】
    (1)用直接开平方法求解即可;
    (2)用求根公式法求解即可.
    【详解】
    (1)解:由.
    得.
    即,或.
    于是,方程的两根为,.
    (2)解:,,.
    .
    方有两个不相等的实数根
    .
    即,.
    本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
    题号





    总分
    得分
    批阅人




    8
    9
    9
    8
    1
    1
    1.2
    1.3
    统计量




    方差
    0.60
    0.62
    0.50
    0.44
    视力
    频数(人)
    频率
    4.0≤x<4.3
    20
    0.1
    4.3≤x<4.6
    40
    0.2
    4.6≤x<4.9
    70
    0.35
    4.9≤x<5.2
    a
    0.3
    5.2≤x<5.5
    10
    b
    A
    B
    进价(万元/套)
    1.5
    1.2
    售价(万元/套)
    1.65
    1.4
    相关试卷

    2025届江苏省无锡市华士片九上数学开学达标测试试题【含答案】: 这是一份2025届江苏省无锡市华士片九上数学开学达标测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省无锡市江阴市华士片九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024年江苏省无锡市江阴市华士片九上数学开学教学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。

    2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】: 这是一份2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map