江苏省无锡市辅仁中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)把代数式2x2﹣18分解因式,结果正确的是( )
A.2(x2﹣9)B.2(x﹣3)2
C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)
2、(4分)关于的一元二次方程有两个不相等的实数根,则的取值范围是( )
A.B.C.且D.且
3、(4分)下列二次根式中,属于最简二次根式的是( )
A.B.C.D.
4、(4分)点位于平面直角坐标系中的( ).
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)给出下列几组数:① 4,5,6;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是( ).
A.①② B.③④ C.①③④ D.④
6、(4分)二次根式在实数范围内有意义,则的取值范围是( )
A.B.C.D.
7、(4分)用配方法解一元二次方程,下列变形正确的是( )
A.B.
C.D.
8、(4分)抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°. 点D是边OB上一动点,点E在BC上,且∠DAE=60°.
有下列结论:
①点C的坐标为(12,);②BD=CE;
③四边形ADBE的面积为定值;
④当D为OB的中点时,△DBE的面积最小.
其中正确的有_______.(把你认为正确结论的序号都填上)
10、(4分)如图,在边长为1的菱形ABCD中,∠ABC=120°连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°连接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.
11、(4分)使在实数范围有意义,则x的取值范围是_________.
12、(4分)方程x4﹣16=0的根是_____.
13、(4分)如图,△ABC与△A'B'C'是位似图形,点O是位似中心,若OA=2AA',S△ABC=8,则S△A'B'C'=___.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?
15、(8分)某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图
根据以上信息,整理分析数据如下:
(1)写出表格中,,的值: , , .
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.
16、(8分)如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.
17、(10分)有大小两种货车,辆大货车与辆小火车一次可以运货吨,辆大货车与辆小货车一次可以运货吨.
(1)求辆大货车和辆小货车一次可以分别运多少吨;
(2)现有吨货物需要运输,货运公司拟安排大小货车共辆把全部货物一次运完.求至少需要安排几辆大货车?
18、(10分)已知:a,b,c为一个直角三角形的三边长,且有,求直角三角形的斜边长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 分.
20、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg
21、(4分)计算的结果等于_______.
22、(4分)若是关于的方程的一个根,则方程的另一个根是_________.
23、(4分)已知一组数据为1,2,3,4,5,则这组数据的方差为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.
(1)在图中以格点为顶点画一个面积为5的正方形.
(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.
25、(10分)2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?
26、(12分)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.
解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).
故选C.
考点:提公因式法与公式法的综合运用.
2、D
【解析】
根据方程有两个不相等的实数根,则,结合一元二次方程的定义,即可求出m的取值范围.
【详解】
解:∵一元二次方程有两个不相等的实数根,
∴
解得:,
∵,
∴的取值范围是:且;
故选:D.
总结一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
3、C
【解析】
根据二次根式的定义即可求解.
【详解】
A. ,根号内含有分数,故不是最简二次根式;
B. ,根号内含有小数,故不是最简二次根式;
C. ,是最简二次根式;
D. =2,故不是最简二次根式;
故选C.
此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.
4、A
【解析】
本题根据各象限内点的坐标的特征即可得到答案
【详解】
解:∵点的横纵坐标都是正的
∴,点P在第一象限
故选A
本题考查平面直角坐标系中四个象限内点的横纵坐标的正负,准确区分为解题关键
5、D
【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n=1时,三边长为:0、2、2,不能组成直角三角形;④(m2-n2)2+( 2mn)2=( m2+n2)2,且m>n>0,∴能组成直角三角形.
故选D.
点睛:本题关键在于勾股定理逆定理的运用.
6、B
【解析】
根据二次根式的被开方数是非负数解题.
【详解】
解:依题意,得
a-1≥0,
解得,a≥1.
故选:B.
考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
7、B
【解析】
移项、方程两边同时加上一次项系数一半的平方,根据完全平方公式进行配方即可.
【详解】
移项,得:
配方,
即,
故选B.
考查配方法解一元二次方程,解题的关键是把方程的左边化成含有未知数的完全平方式,右边是一个非负数形式.
8、D
【解析】
根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.
【详解】
如图,∵与轴的一个交点坐标为,抛物线的对称轴是,
实验求出二次函数与x轴的另一个交点为(-2,0)
故可补全图像如下,
由图可知a<0,c>0,对称轴x=1,故b>0,
∴,①错误,
②对称轴x=1,故x=-,∴,正确;
③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;
故选D
此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②③
【解析】
①过点C作CF⊥OB,垂足为点F,求出BF=4,CF=,即可求出点C坐标;②连结AB,证明△ADB≌△AEC,则BD=CE;③由S△ADB=S△AEC,可得S△ABC=S△四边形ADBE=×8×=;④可证△ADE为等边三角形,当D为OB的中点时,AD⊥OB,此时AD最小,则S△ADE最小,由③知S四边形ADBE为定值,可得S△DBE最大.
【详解】
解:①过点C作CF⊥OB,垂足为点F,
∵四边形AOBC为菱形,
∴OB=BC=8,∠AOB=∠CBF=60°,
∴BF=4,CF=,
∴OF=8+4=12,
∴点C的坐标为(12,),故①正确;
②连结AB,
∵BC=AC=AO=OB,∠AOB=∠ACB=60°,
∴△ABC是等边三角形,△AOB是等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAE=60°,
∴∠DAB=∠EAC,
∵∠ABD=∠ACE=60°,
∴△ADB≌△AEC(ASA),
∴BD=CE,故②正确;
③∵△ADB≌△AEC.
∴S△ADB=S△AEC,
∴S△ABC=S△四边形ADBE=×8×=,故③正确;
④∵△ADB≌△AEC,
∴AD=AE,
∵∠DAE=60°,
∴△ADE为等边三角形,
当D为OB的中点时,AD⊥OB,
此时AD最小,则S△ADE最小,
由③知S四边形ADBE为定值,可得S△DBE最大.
故④不正确;
故答案为:①②③.
本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质等,正确作出辅助线是解题的关键.
10、
【解析】
连接DB,
∵四边形ABCD是菱形,
∴AD=AB,AC⊥DB,
∵∠DAB=60°,
∴△ADB是等边三角形,
∴DB=AD=1,
∴BM=,
∴AM=,
∴AC=,
同理可得AE=AC=()2,AG=AE=3=()3,
按此规律所作的第n个菱形的边长为()n−1,
故答案为()n−1.
点睛:本题是一道找规律的题目.探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.
11、x≥
【解析】
根据:对于式子,a≥0,式子才有意义.
【详解】
若在实数范围内有意义,则3x-1≥0,解得x≥.
故答案为x≥
本题考核知识点:二次根式的意义. 解题关键点:理解二次根式的意义.
12、±1
【解析】
根据平方根的定义,很容易求解,或者把方程左边因式分解,通过降次的方法也可以求解.
【详解】
∵x4﹣16=0,
∴(x1+4)(x+1)(x﹣1)=0,
∴x=±1,
∴方程x4﹣16=0的根是x=±1,
故答案为±1.
该题为高次方程,因此解决该题的关键,是需要把方程左边因式分解,从而达到降次的目的,把高次方程转化为低次方程,从而求解.
13、1.
【解析】
解:由题易知△ABC∽△A′B′C′,
因为OA=2AA′,所以OA′=OA+AA′=3AA′,
所以,
又S△ABC=8,所以.
故答案为:1.
三、解答题(本大题共5个小题,共48分)
14、(1)A型:100元,B型:150元;(2)①y=-50x+15000;②34台A型电脑和66台B型,利润最大,最大利润是1元
【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;然后根据销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元列出方程组,然后求解即可;
(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;
②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
【详解】
解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;
根据题意得,
解得.
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;
(2)①根据题意得,y=100x+150(100-x),
即y=-50x+15000;
②据题意得,100-x≤2x,
解得x≥33,
∵y=-50x+15000,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100-x=66,
此时最大利润是y=-50×34+15000=1.
即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是1元.
本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
15、(1)1,80,1;(2)从平均数和中位数进行分析,中学组代表队的决赛成绩较好;(3)中学组代表队选手成绩较稳定.
【解析】
(1)根据平均数、中位数、众数的计算方法,通过计算得出答案,
(2)从平均数和中位数两个方面进行比较、分析得出结论,
(3)利用方差的计算公式,分别计算两个组的方差,通过比较得出答案.
【详解】
(1)中学组的平均数分;
小学组的成绩:70、75、80、100、100因此中位数为:80;
中学组出现次数最多的分数是1分,所有众数为1分;
故答案为:1,80,1.
(2)从平均数上看,两个队都是1分,但从中位数上看中学组1分比小学组的80分要好,
因此从平均数和中位数进行分析,中学组的决赛成绩较好;
答:从平均数和中位数进行分析,中学组代表队的决赛成绩较好.
(3)
,
中学组的比较稳定.
答:中学组代表队选手成绩较稳定.
考查从统计图、统计表中获取数据的能力,以及平均数、中位数、众数、方差的意义和计算方法、明确各个统计量反映一组数据哪些特征,即要对一组数据进行分析,需要利用哪个统计量.
16、见解析
【解析】
根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,即AE∥CF,
又∵AE=CF,
∴四边形AECF为平行四边形,
∴AF=CE.
本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
17、 (1) 1辆大货车一次运货4吨,1辆小货车一次运货1.5吨;(2)7辆.
【解析】
(1)设1辆大货车一次运货x吨,1辆小货车一次运货y吨,,解方程组可得;(2)设货物公司安排大货车辆,则小货车需要安排辆,,求整数解可得.
【详解】
解:(1)设1辆大货车一次运货x吨,1辆小货车一次运货y吨,
①②得
把代入①,得
(2)设货物公司安排大货车辆,则小货车需要安排辆,
解得
为正整数,
最小可以取
答:辆大货车一次可以运货吨,辆小货车一次可以运货吨,该货物公司至少安排辆大货车.
考核知识点:方程组和不等式应用.理解题意中的数量关系是关键.
18、该直角三角形的斜边长为3或.
【解析】
试题分析:根据非负数的性质求得a、b的值,然后利用勾股定理即可求得该直角三角形的斜边长.
试题解析:解:∵,∴a﹣3=2,b﹣1=2,解得:a=3,b=1.
①以a为斜边时,斜边长为3;
②以a,b为直角边的直角三角形的斜边长为=.
综上所述:即直角三角形的斜边长为3或.
点睛:本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为2时,则其中的每一项都必须等于2.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.
【详解】
小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).
故答案为1.
20、20
【解析】
设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
21、2
【解析】
先套用平方差公式,再根据二次根式的性质计算可得.
【详解】
原式=()2﹣()2=5﹣3=2,
考点:二次根式的混合运算
22、
【解析】
设另一个根为y,利用两根之和,即可解决问题.
【详解】
解:设方程的另一个根为y,
则y+ =4 ,
解得y=,
即方程的另一个根为,
故答案为:.
题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
23、1.
【解析】
试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
由平均数的公式得:(1+1+3+4+5)÷5=3,
∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.
考点:方差.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)∠ABC=45°.
【解析】
(1)根据勾股定理作出边长为的正方形即可得;
(2)连接AC,根据勾股定理逆定理可得△ABC是以AC、BC为腰的等腰直角三角形,据此可得答案.
【详解】
(1)如图1所示:
(2)如图2,连AC,则
∵,即BC2+AC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴∠ABC=∠CAB=45°.
本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.
25、提速前的速度为200千米/小时,提速后的速度为350千米/小时,
【解析】
设列车提速前的速度为x千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可.
【详解】
设提速前后的速度分别为x千米每小时和1.5x千米每小时,根据题意得:
解得:x=200,
经检验:x=200是原方程的根,
∴1.5x=300,
答:提速前后的速度分别是200千米每小时和300千米每小时.
考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.
26、见解析
【解析】
解:结论:四边形ABCD是平行四边形
证明:∵DF∥BE
∴∠AFD=∠CEB
又∵AF=CE DF=BE,
∴△AFD≌△CEB(SAS)
∴AD=CB ∠DAF=∠BCE
∴AD∥CB
∴四边形ABCD是平行四边形
题号
一
二
三
四
五
总分
得分
平均数(分
中位数(分
众数(分
小学组
85
100
中学组
85
江苏省无锡市经开区2024-2025学年数学九上开学质量跟踪监视试题【含答案】: 这是一份江苏省无锡市经开区2024-2025学年数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省苏州市吴江区实验中学2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份江苏省苏州市吴江区实验中学2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省靖江市城南新区中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份江苏省靖江市城南新区中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。