江苏省无锡市江阴市暨阳中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数y=中自变量x的取值范围是( )
A.x>3B.x<3C.x≤3D.x≥﹣3
2、(4分)关于一次函数y=x﹣1,下列说法:①图象与y轴的交点坐标是(0,﹣1);②y随x的增大而增大;③图象经过第一、二、三象限; ④直线y=x﹣1可以看作由直线y=x向右平移1个单位得到.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
3、(4分)有一组数据:3,5,5,6,7,这组数据的众数为( )
A.5B.3C.7D.6
4、(4分)下列各因式分解的结果正确的是( )
A.B.
C.D.
5、(4分)估计(+3)×的运算结果应在( )之间.
A.2和3B.3和4C.4和5D.5和6
6、(4分)点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,当x1<0<x2时,y1>y2,则k的取值围是( )
A.kC.k<2D.k>2
7、(4分)▱ABCD中,如果,那么、的值分别是
A.,B.,
C.,D.,
8、(4分)下面的平面图形中,不能镶嵌平面的图形是( )
A.正三角形B.正六边形C.正四边形D.正五边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
10、(4分)若关于x的分式方程有增根,则m的值为_______.
11、(4分)已知不等式组的解集为,则的值是________.
12、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
13、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在由边长为1个单位的长度的小正方形组成的网格图中,已知点O及△ABC的顶点均为网格线的交点
(1)在给定网格中,以O为位似中心,将△ABC放大为原来的三倍,得到请△A′B′C′,请画出△A′B′C′;
(2)B′C′的长度为___单位长度,△A′B′C′的面积为___平方单位。
15、(8分)探索与发现
(1)正方形ABCD中有菱形PEFG,当它们的对角线重合,且点P与点B重合时(如图1),通过观察或测量,猜想线段AE与CG的数量关系,并证明你的猜想;
(2)当(1)中的菱形PEFG沿着正方形ABCD的对角线平移到如图2的位置时,猜想线段AE与CG的数量关系,只写出猜想不需证明.
16、(8分)七(1)班同学为了解2017年某小区家庭月均用水情况,随机调查了该小区的部分家庭,并将调查数据进行如下整理.请解答以下问题:
(1)请将下列频数分布表和频数分布直方图补充完整;
(2)求该小区月均用水量不超过的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计该小区月均用水量超过的家庭数.
17、(10分)有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球,
(1)用树形图或列表法展现可能出现的所有结果;
(2)求摸到一个红球和一个白球的概率.
18、(10分)某市在今年对全市6000名八年级学生进行了一次视力抽样调查,并根据统计数据,制作了的统计表和如图所示统计图.
请根据图表信息回答下列问题:
(1)求抽样调查的人数;
(2)______,______,______;
(3)补全频数分布直方图;
(4)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是多少?根据上述信息估计该市今年八年级的学生视力正常的学生大约有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若有意义,则的取值范围为_________.
20、(4分)用换元法解方程时,如果设,那么所得到的关于的整式方程为_____________
21、(4分)如图,的对角线、交于点,则图中成中心对称的三角形共有______对.
22、(4分)计算:(−)2=________;=_________.
23、(4分)如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,为坐标原点,的三个顶点坐标分别为,,,与关于原点对称.
(1)写出点、、的坐标,并在右图中画出;
(2)求的面积.
25、(10分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.
(1)求OD长的取值范围;
(2)若∠CBD=30°,求OD的长.
26、(12分)在平面直角坐标系中,O为坐标原点.
(1)已知点A(3,1),连接OA,作如下探究:
探究一:平移线段OA,使点O落在点B,设点A落在点C,若点B的坐标为(1,2),请在图①中作出BC,点C的坐标是__________.
探究二:将线段OA绕点O逆时针旋转90°,设点A落在点D,则点D的坐标是__________;连接AD,则AD=________(图②为备用图).
(2)已知四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,若所得到的四边形为平行四边形,则点C的坐标是____________.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解:由题意得,1-x>0,
解得x<1.
故选:B.
本题考查函数自变量取值范围.
2、C
【解析】
①将x=0代入一次函数解析式中求出y值,由此可得出结论①符合题意;②由k=1>0结合一次函数的性质即可得出y随x的增大而增大,即结论②符合题意;③由k、b的正负结合一次函数图象与系数的关系即可得出该函数图象经过第一、三、四象限,即结论③不符合题意;④根据平移“左加右减”即可得出将直线y=x向右平移1个单位得到的直线解析式为y=x-1,即结论④符合题意.综上即可得出结论.
【详解】
①当x=0时,y=-1,
∴图象与y轴的交点坐标是(0,-1),结论①符合题意;
②∵k=1>0,
∴y随x的增大而增大,结论②符合题意;
③∵k=1>0,b=-1<0,
∴该函数图象经过第一、三、四象限,结论③不符合题意;
④将直线y=x向右平移1个单位得到的直线解析式为y=x-1,
∴结论④符合题意.
故选:C.
考查了一次函数的性质、一次函数图象与系数的关系以及一次函数图象与几何变换,逐一分析四条结论是否符合题意是解题的关键.
3、A
【解析】
根据众数的概念:一组数据中出现次数最多的数值为众数,即可得到答案
【详解】
解:由题中数据可得:5出现的次数最多
∴这组数据的众数为5
故选A
本题考查众数的概念,要熟练掌握.
4、C
【解析】
将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.
【详解】
=a(a+1)(a-1),故A错误;
,故B错误;
,故C正确;
不能分解因式,故D错误,
故选:C.
此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.
5、C
【解析】
先对原式进行计算,然后对结果中的进行估算,则最后的结果即可估算出来.
【详解】
原式,
∵,
∴,
即,
则原式的运算结果应在4和5之间,
故选:C.
本题主要考查二次根式的混合运算及无理数的估算,掌握无理数的估算方法是解题的关键.
6、B
【解析】
根据当x1<0<x2时,y1>y2可得双曲线在第二,四象限,1-2k<0,列出方程求解即可.
【详解】
解:∵A(x1,y1),B(x2,y2)在反比例函数y=的图象上,
又∵x1<0<x2时,y1>y2,
∴函数图象在二四象限,
∴1﹣2k<0,
∴k>,
故选B.
本题考查了反比例函数图象上点的坐标特征,得出1-2k<0是关键,较为简单.
7、B
【解析】
根据平行四边形的对角相等,邻角互补,已知∠B,即可求出∠D,∠A的值.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠D=∠B=100°,AD//BC,
∴∠A=180°-∠B=180°-100°=80°,
故选B.
本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
8、D
【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
【详解】
A、正三角形的每一个内角都是60°,放在同一顶点处6个即能镶嵌平面;
B、正六边形每个内角是120°,能整除360°,故能镶嵌平面;
C、正四边形的每个内角都是90°,放在同一顶点处4个即能镶嵌平面;
D、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌平面,
故选D.
本题考查了平面镶嵌(密铺),用一般凸多边形镶嵌,用任意的同一种三角形或四边形能镶嵌成一个平面图案.因为三角形内角和为180°,用6个同一种三角形就可以在同一顶点镶嵌,而四边形的内角和为360°,用4个同一种四边形就可以在同一顶点处镶嵌.用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
证明△ADD′是等腰直角三角形即可解决问题.
【详解】
解:由旋转可知:△ABD≌△ACD′,
∴∠BAD=∠CAD′,AD=AD′=2,
∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
∴DD′=,
故答案为:.
本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
10、1
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.
【详解】
解:方程两边都乘,得
∵原方程有增根,
∴最简公分母,
解得,
当时,
故m的值是1,
故答案为1
本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
11、
【解析】
根据不等式的解集求出a,b的值,即可求解.
【详解】
解得
∵解集为
∴=1,3+2b=-1,
解得a=1,b=-2,
∴=2×(-3)=-6
此题主要考查不等式的解集,解题的关键是熟知不等式的性质及解集的定义.
12、y=2x+1
【解析】
分析:直接根据函数图象平移的法则进行解答即可.
详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
故答案为y=2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
13、y=﹣1x
【解析】
试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:
∵正比例函数y=kx的图象经过点A(﹣1,1),
∴﹣k=1,即k=﹣1.
∴正比例函数的解析式为y=﹣1x.
三、解答题(本大题共5个小题,共48分)
14、(1)如图所示;见解析;(2)3,9;
【解析】
(1)利用位似图形的性质得出对应点坐标进而得出答案;
(2)根据勾股定理和三角形的面积公式即可得到结论.
【详解】
(1)如图所示:△A′B′C′即为所求:
(2)如图所示:B′C′的长度= =3 ;
∵A′C′=3,
∴△A′B′C′的面积为= ×3×6=9平方单位,
故答案为:3,9.
此题考查作图-位似变换,勾股定理和三角形的面积公式,解题关键在于掌握作图法则
15、(1)结论:AE=CG.理由见解析;(2)结论不变,AE=CG.
【解析】
分析:(1)结论AE=CG.只要证明△ABE≌△CBG,即可解决问题.
(2)结论不变,AE=CG.如图2中,连接BG、BE.先证明△BPE≌△BPG,再证明△ABE≌△CBG即可.
详解:(1)结论:AE=CG.理由如下:
如图1,
∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD,
∵四边形PEFG是菱形,∴BE=BG,∠EBD=∠GBD,∴∠ABE=∠CBG,
在△ABE和△CBG中,
,∴△ABE≌△CBG,∴AE=CG.
(2)结论不变,AE=CG.理由如下:
如图2,连接BG、BE.
∵四边形PEFG是菱形,∴PE=PG,∠FPE=∠FPG,∴∠BPE=∠BPG,
在△BPE和△BPG中,
,∴△BPE≌△BPG,∴BE=BG,∠PBE=∠PBG,
∵∠ABD=∠CBD,∴∠ABE=∠CBG,
在△ABE和△CBG中,
,∴△ABE≌△CBG,∴AE=CG.
点睛:本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.
16、(1)12,0.08;图见解析;(2)68%;(3)120户.
【解析】
(1)根据月用电量是0
(3)根据表格求出月均用水量在20
(1)调查的家庭总数是:6÷0.12=50(户),
则月用水量5
补全的图形如下图:
(2)该小区用水量不超过15t的家庭的频率之和是0.12+0.24+0.32=0.68,
即月均用水量不超过15t的家庭占被调查的家庭总数的68%.
(3)月均用水量在20
则该小区月均用水量超过20t的家庭大约有1000×0.12=120(户).
此题考查频数(率)分布表,频数(率)分布直方图,用样本估计总体,解题关键在于看懂图中数据.
17、(1)见解析;(2)
【解析】
(1)按照树状图的画法画出树状图即可;
(2)根据树状图得出摸到一红一白的概率.
【详解】
(1)树状图如下:
(2)根据树状图得:
共有12种情况,其中恰好1红1白的情况有5种
故概率P=
本题考查利用树状图求概率,注意,本题还可用列表法求概率,应熟练掌握这两种方法.
18、(1)抽样调查的人数是200人;(2)40,60,30;(3)补图见解析;(4)该市2016年中考的初中毕业生视力正常的学生大约有2400人.
【解析】
(1)先根据4.0≤x<4.3的频数除以频率求出被调查的总人数,
(2)用总人数乘以频率20%计算即可得到a,用总人数减去其他频数求出b,再用b除以总人数,即可求出m的值;
(3)根据(2)求出a,b的值,即可补全统计图;
(4)求出后两组的频率之和即可求出视力正常的人数占被统计人数的百分比,用总人数乘以所占的百分比即可得解.
【详解】
(1)抽样调查的人数是:人;
(2)a=200×20%=40(人);
b=200−20−40−70−10=60(人);
m%= ×100%=30%,则m=30;
故答案为:40,60,30;
(3)根据(2)求出a,b的值,补图如下:
(4)视力正常的人数占被统计人数的百分比是:;
根据题意得:(人)
答:该市2016年中考的初中毕业生视力正常的学生大约有2400人.
此题考查频数(率)分布表,频数(率)分布直方图,解题关键在于看懂图中数据
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根式有意义,被开方式要大于等于零.
【详解】
解:∵有意义,
∴2x0,
解得:
故填.
本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.
20、
【解析】
可根据方程特点设,则原方程可化为-y=1,再去分母化为整式方程即可.
【详解】
设,则原方程可化为:-y=1,
去分母,可得1-y2=y,
即y2+y-1=1,
故答案为:y2+y-1=1.
本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.
21、4
【解析】
▱ABCD是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.
【详解】
解:图中成中心对称的三角形有△AOD和△COB,△ABO与△CDO,△ACD与△CAB,△ABD和△CDB共4对.
本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.
22、5 π-1
【解析】
根据二次根式的性质计算即可.
【详解】
解:.
故答案为:5,π-1.
本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.
23、2
【解析】
根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.
【详解】
解:∵四边形AFCE是正方形,
∴AE=EC,∠E=90°,
△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,
∴△ABF≌△ADE,
∴正方形AFCE的面积=四边形ABCD的面积=18cm1.
∴AE=CE==,
∴AC=AE=2cm.
故答案为:2.
本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.
二、解答题(本大题共3个小题,共30分)
24、(1)、、,作图见解析;(2)6
【解析】
(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用三角形面积公式计算.
【详解】
解:(1)如图,△A1B1C1为所作,
∴、、;
(2);
本题考查三角形的面积计算,难度不大,解决本题的关键是正确掌握关于原点对称的点的坐标的特点.
25、(1);(2).
【解析】
(1)根据三角形三边关系即可求解;
(2)过点D作DE⊥BC交BC延长线于点E,构建直角三角形,利用勾股定理解题即可.
【详解】
解:(1)∵四边形ABCD是平行四边形,AB=5,BC=1,
∴AB=CD=5,BC=AD=1,OD=BD,
∴在△ABD中,,
∴.
(2)过点D作DE⊥BC交BC延长线于点E,
∵∠CBD=30°,
∴DE=BD,
∵四边形ABCD是平行四边形,
∴OD=BD=DE,
设OD为x,则DE=x,BD=2x,
∴BE=,
∵BC=1,
∴CE=BE-BC=-1,
在Rt△CDE中,,
解得,,
∵BE=>BC=1,
∴不合题意,舍
∴OD=.
故答案为:(1);(2).
本题考查了平行四边形性质、三角形三边关系以及勾股定理的运用,熟练解一元二次方程是解决本题的关键.
26、 (1)探究一 图见解析;(4,3);探究二 (-1,3);2;
(2)(a+c,b+d)
【解析】
(1)探究一:由于点A(3,1),连接OA,平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),由此即可得到平移方法,然后利用平移方法即可确定在图1中作出BC,并且确定点C的坐标;探究二:将线段OA绕点O逆时针旋转90度,设点A落在点D,根据旋转的性质和方向可以确定点D的坐标;
(2)已知四点O(0,0),A (a,b),C,B(c,d),顺次连接O,A,C,B.
若所得到的四边形为平行四边形,那么得到OA∥CB,根据平移的性质和已知条件即可确定点C的坐标;
【详解】
解:(1)探究一:∵点A(3,1),连接OA,平移线段OA,使点O落在点B.
设点A落在点C,若点B的坐标为(1,2),
则C的坐标为(4,3), 作图如图①所示.
探究二:∵将线段OA绕点O逆时针旋转90度,
设点A落在点D.
则点D的坐标是(-1,3),如图②所示,由勾股定理得:OD2=0A2=12+32=10,
AD===2.
(2)(a+c,b+d)
∵四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,所得到的四边形为平行四边形,
∴OA綊BC.
∴可以看成是把OA平移到BC的位置.
∴点C的坐标为(a+c,b+d).
本题考查坐标与图形的变换、平行四边形的性质等知识,综合性比较强,要求学生熟练掌握相关的基础知识才能很好解决这类问题.
题号
一
二
三
四
五
总分
得分
月均用水量
频数(户数)
百分比
6
16
10
4
2
组别
视力
频数(人)
A
20
B
a
C
b
D
70
E
10
江苏省江阴市暨阳中学2024年数学九年级第一学期开学统考试题【含答案】: 这是一份江苏省江阴市暨阳中学2024年数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省无锡市江阴市暨阳中学九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2025届江苏省无锡市江阴市暨阳中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省江阴市南菁教育集团暨阳校区数学九年级第一学期开学预测试题【含答案】: 这是一份2024年江苏省江阴市南菁教育集团暨阳校区数学九年级第一学期开学预测试题【含答案】,共21页。试卷主要包含了选择题,四象限,则k的取值可能是,解答题等内容,欢迎下载使用。