


江苏省无锡市锡东片2025届九年级数学第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数的自变量满足≤≤2时,函数值y满足≤≤1,则这个函数肯定不是( )
A.B.C.D.
2、(4分)已知2是关于x的方程x2﹣2ax+4=0的一个解,则a的值是( )
A.1B.2C.3D.4
3、(4分)下列曲线中不能表示是的函数的是( )
A.(A)B.(B)C.(C)D.(D)
4、(4分)化简结果正确的是( )
A.xB.1C.D.
5、(4分)下列实数中,能够满足不等式的正整数是( )
A.-2B.3C.4D.2
6、(4分)一个三角形的三边分别是6、8、10,则它的面积是( )
A.24B.48C.30D.60
7、(4分)若二次根式有意义,则x的取值范围是( )
A.B.C.D.
8、(4分)若一次函数的图象经过两点和,则下列说法正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.
10、(4分)计算:=________.
11、(4分)如图,在Rt△ABC中,∠B=90°,AB=,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为____.
12、(4分)已知四边形中,,,含角()的直角三角板(如图)在图中平移,直角边,顶点、分别在边、上,延长到点,使,若,,则点从点平移到点的过程中,点的运动路径长为__________.
13、(4分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
15、(8分)如图:,点在一条直线上,.求证:四边形是平行四边形.
16、(8分)分解因式和利用分解因式计算
(1)(a2+1)2-4a2
(2)已知x+y=1.2,x+3y=1,求3x2+12xy+12y2的值。
17、(10分)如图1,在▱ABCD中,点O是对角线AC的中点,EF过点O与AD,BC分别相交于点E,F,GH过点O与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.
(1)求证:四边形EGFH是平行四边形;
(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有的平行四边形.(四边形AGHD除外)
18、(10分)先化简,再求值:(x+2-)•,其中x=3+.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正比例函数的图象与反比例函数的图象交于A(2,1),B两点,则不等式的解集是_________.
20、(4分)顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.
21、(4分)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是,则飞机着陆后滑行的最长时间为 秒.
22、(4分)观察分析下列数据:,则第17个数据是 _______ .
23、(4分)菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?
25、(10分)在平面直角坐标系中,已知一次函数与反比例函数.
(1)当在什么样的范围内,直线与曲线必有两个交点.
(2)在(1)的情况下,结合图像,当时,请直接写出自变量x的范围(用含字母k的代数式表示).
26、(12分)解不等式组,并把解集在数轴上表示出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.
【详解】
:A、把x=代入可得y=4,把x=2代入可得y=1,故A正确;
B、把x=代入可得y=,把x=2代入可得y=1,故B错误;
C、把x=代入可得y=,把x=2代入可得y=1,故C错误;
D、把x=代入可得y=16,把x=2代入可得y=1,故D错误.
故选A.
此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.
2、B
【解析】
把x=1代入方程x1-1ax+4=0,得到关于a的方程,解方程即可.
【详解】
∵x=1是方程x1-1ax+4=0的一个根,
∴4-4a+4=0,
解得a=1.
故选B.
本题考查了一元二次方程的解的概念,解题时注意:使方程两边成立的未知数的值叫方程的解.
3、B
【解析】
分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.
详解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
选项B中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故B中曲线不能表示y是x的函数.
故选:B.
点睛:考查了函数的概念,理解函数的定义,是解决本题的关键.
4、B
【解析】
根据分式的加减法法则计算即可得出正确选项.
【详解】
解:=.
故选:B.
本题主要考查了分式的加减,同分母分式相加减,分母不变,分子相加减.
5、D
【解析】
将各项代入,满足条件的即可.
【详解】
A选项,-2不是正整数,不符合题意;
B选项,,不符合题意;
C选项,,不符合题意;
D选项,,符合题意;
故选:D.
此题主要考查不等式的正整数解,熟练掌握,即可解题.
6、A
【解析】
先根据勾股定理逆定理证明三角形是直角三角形,再利用面积法代入求解即可.
【详解】
∵,
∴三角形是直角三角形,
∴面积为:.
故选A.
本题考查勾股定理逆定理的应用,关键在于熟悉常用的勾股数.
7、C
【解析】
根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.
【详解】
∵二次根式有意义,
∴,
∴,
故选:C.
本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.
8、A
【解析】
根据一次函数的增减性求解即可.
【详解】
∵2>0,
∴y随x的增大而增大,
∵-1<2,
∴.
故选A.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由0-4分钟的函数图象可知进水管的速度,根据4-12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.
解:进水管的速度为:20÷4=5(升/分),
出水管的速度为:5-(30-20)÷(12-4)=3.75(升/分),
∴关停进水管后,出水经过的时间为:30÷3.75=1分钟.
故答案为1.
10、7
【解析】
根据平方差公式展开,再开出即可;
【详解】
=
=
=7.
故答案为7.
本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.
11、
【解析】
连接DE、CD,先证明四边形DEFC为平行四边形,再求出CD的长,即为EF的长.
【详解】
连接DE、CD,
∵D、E分别是AB、AC的中点,CF=BC
∴DE=BC=CF,DE∥BF,
∴四边形DEFC为平行四边形,
∵BD=AB=,BC=3,AB⊥BF,
∴EF=CD=
此题主要考查四边形的线段求解,解题的关键是根据题意作出辅助线,求证平行四边形,再进行求解.
12、
【解析】
当点P与B重合时,推出△AQK为等腰直角三角形,得出QK的长度,当点M′与D重合时,推出△KQ′M′为等腰直角三角形,得出KQ′的长度,根据题意分析出点Q的运动路径为QK+KQ′,从而得出结果.
【详解】
解:如图当点M与A重合时,∵∠ABC=45°,∠ANB=90°,
PN=MN=CD=3,BN=MN=3,
∴此时PB=3-3,
∵运动过程中,QM=PB,
当点P与B重合时,点M运动到点K, 此时点Q在点K的位置,
AK即AM的长等于原先PB和AQ的长,即3-3,
∴△AQK为等腰直角三角形,
∴QK=AQ=3-3,
当点M′与D重合时,P′B=BC-P′C=10-3=Q′M′,
∵AD=BC-BN=BC-AN=BC-DC=7,
KD=AD-AK=7-(3-3)=10-3,
Q′M′=BP′=BC-P′C= BC-PN =10-3,
∴△KQ′M′为等腰直角三角形,
∴KQ′=Q′M′=(10-3)=,
当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′,
∴QK+KQ′=(3-3)+()=7,
故答案为7.
本题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.
13、(-3,-1)
【解析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
【详解】
解:∵点Q与点P(3,﹣1)关于y轴对称,
∴Q(-3,-1).
故答案为:(-3,-1).
本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;
(2)见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
15、详见解析
【解析】
根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.
【详解】
,
∴AC+CF=EF+CF
,
又,
,
,
,
,
,
∴四边形是平行四边形.
本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.
16、(1);(2)1.18
【解析】
(1)原式利用平方差公式及完全平方公式分解即可;
(2)原式提取公因式,将已知等式代入计算即可求出值.
【详解】
解:(1)原式=(a2+ 1+ 2a)(a2+1-2a)
= (a+1)2(a+1)2
(2)∵ x + y = 1.2 ,x + 3y = 1
∴ 2 x + 4 y = 1.2
∴ x + 2 y = 1.6
∴原式= 3(x2+4xy+4y2)
=3 (x+2y)2
=3 ×1.6×1.6
=1.18
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
17、(1)见解析;(2)▱GBCH、▱ABFE、▱EFCD、▱EGFH
【解析】
试题分析:根据ABCD为平行四边形得出AD∥BC,则∠EAO=∠FCO,根据OA=OC,∠AOE=∠COF得出△OAE和△OCF全等,从而得出OE=OF,同理得出OG=OH,从而说明平行四边形;根据平行四边形的性质得出面积相等的四边形
试题解析:(1)证明:∵四边形ABCD为平行四边形 ∴AD∥BC ∴∠EAO=∠FCO
∵OA=OC ∠AOE=∠COF ∴△OAE≌△OCF ∴OE=OF 同理OG=OH ∴四边形EGFH是平行四边形
(2)□ABFE、□GBCH、□EFCD、□EGFH
考点:平行四边形的性质和判定
18、x-3,
【解析】
原式括号内先通分,再算减法,然后进行分式的乘法运算,再把x的值代入化简后的式子计算即可.
【详解】
解:原式=•=•=•=x-3;
当x=3+时,原式=3+-3=.
本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣1<x<0或x>1
【解析】
根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
【详解】
∵正比例函数y=kx的图象与反比例函数y的图象交于A(1,1),B两点,∴B(﹣1,﹣1).
观察函数图象,发现:当﹣1<x<0或x>1时,正比例函数图象在反比例函数图象的上方,∴不等式kx的解集是﹣1<x<0或x>1.
故答案为:﹣1<x<0或x>1.
本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.
20、菱形
【解析】
【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.
【详解】如图
连接BD,AC
由矩形性质可得AC=BD,
因为,E,F,G,H是各边的中点,
所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC
所以,EG=EF=EF=FG,
所以,所得四边形EFGH是菱形.
故答案为:菱形
【点睛】本题考核知识点:矩形性质,菱形判定. 解题关键点: 由三角形中位线性质证边相等.
21、1.
【解析】
把解析式化为顶点式,再根据二次函数的性质得出答案即可。
【详解】
解:,
∴当t=1时,s取得最大值,此时s=2.
故答案为1.
考点:二次函数的应用;最值问题;二次函数的最值.
22、
【解析】
分析:将原数变形为:1×,2×,3×,4×…,根据规律可以得到答案.
详解:将原数变形为:1×,2×,3×,4×…,所以第17个数据是:17×=51.
故答案为:51.
点睛:本题考查了算术平方根,解题的关键是将所得二次根式变形,找到规律解答.
23、8
【解析】
【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.
【详解】设另一条对角线的长为x,则有
=16,
解得:x=8,
故答案为8.
【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)平均数:260(件) 中位数:240(件) 众数:240(件)(2)不合理
【解析】
试题解析:解:(1)这15个人的平均数是:,
中位数是:240,
众数是240;
(2)不合理,因为这15个人中只有4个人可以完成任务,大部分人都完不成任务.
考点:平均数、中位数、众数
点评:本题主要考查了平均数、中位数、众数. 平均数、中位数、众数都反映了一组数据的集中趋势,但是平均数容易受到这组数据中的极端数数的影响,所以中位数和众数更具有代表性.
25、(1);(2).
【解析】
(1)将两个函数关系式消去y,得到关于x的方程,根据根的判别式大于0列出不等式,求出不等式的解集即可得到k的范围;
(2)由(1)可求出x的值,再根据k的值进一步求解即可.
【详解】
(1)
(2)由(1)得:
若由图像得:
若
由图像得:
此题考查了反比例函数与一次函数的交点,熟练掌握待定系数法是解本题的关键.
26、
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
由①得,x≥-1,
由②得,x<3,
所以,不等式组的解集为:-1≤x<3,
在数轴上表示如下:
本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
题号
一
二
三
四
五
总分
得分
加工件数
540
450
300
240
210
120
人数
1
1
2
6
3
2
江苏省无锡锡山区锡东片2024年九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份江苏省无锡锡山区锡东片2024年九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡锡东片2025届九上数学开学调研模拟试题【含答案】: 这是一份江苏省无锡锡东片2025届九上数学开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省无锡市锡山区锡东片九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届江苏省无锡市锡山区锡东片九年级数学第一学期开学教学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。