![江苏省盐城射阳县联考2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16285062/0-1729728423424/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省盐城射阳县联考2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16285062/0-1729728423525/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省盐城射阳县联考2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16285062/0-1729728423549/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省盐城射阳县联考2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份江苏省盐城射阳县联考2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)赵老师是一名健步走运动的爱好者为备战2019中国地马拉松系列赛·广元站10千米群众健身赛,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图在每天健步走的步数这组数据中,众数和中位数分别是( )
A.2.2,2.3B.2.4,2.3C.2.4,2.35D.2.3,2.3
2、(4分)若分式有意义,则x满足的条件是( )
A.x≠1的实数B.x为任意实数C.x≠1且x≠﹣1的实数D.x=﹣1
3、(4分)下列二次根式,最简二次根式是( )
A.B.C.D.
4、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为( )
A.(1,2)B.(4,2)C.(2,4)D.(2,1)
5、(4分)函数y=中自变量x的取值范围是( )
A.x≠2B.x≠0C.x≠0且x≠2D.x>2
6、(4分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD
7、(4分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为( )
A.6B.8C.10D.12
8、(4分)在中,,的中垂线交,于点,,的周长是8,,则的周长是( )
A.10B.11C.12D.13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系 xOy 中,点O 是坐标原点,点 B 的坐标是3m, 4m 4,则OB 的最小值是____________.
10、(4分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____
11、(4分)如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.
当时,正方形ABCD的边长______.
连结OD,当时,______.
12、(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为________.
13、(4分)已知,,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,按如下步骤作图:
①以点A为圆心,AB长为半径画弧;
②以点C为圆心,CB长为半径画弧,两弧相交于点D;
③连接BD,与AC交于点E,连接AD、CD;
(1)求证:;
(2)当时,猜想四边形ABCD是什么四边形,并证明你的结论;
(3)当,,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?
15、(8分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分)
(1)两个班的平均得分分别是多少;
(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.
16、(8分)(1)计算:
(2)计算:(2+)(2﹣)+÷+
(3)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上且DF=BE,连接AF,BF.
①求证:四边形BFDE是矩形;
②若CF=6,BF=8,AF平分∠DAB,则DF= .
17、(10分)小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.
18、(10分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.
(1)若点与点重合,请直接写出点的坐标.
(2)若点在的延长线上,且,求点的坐标.
(3)若,求点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,四边形中,,,且,顺次连接四边形各边中点,得到四边形,再顺次连接四边形各边中点得到四边形,如此进行下去,得到四边形,则四边形的面积是________.
20、(4分)如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.
21、(4分)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,若两人比赛成绩的方差分别为S2甲=1.25和S2乙=3,则成绩比较稳定的是__________(填甲或乙).
22、(4分)已知点,关于x轴对称,则________.
23、(4分)在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.
(1)求证:DA=DF;
(2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.
25、(10分)计算:(1)
(2)已知,,求的值.
26、(12分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.
(1)直接写出直线的解析式为______,______.
(2)在直线上存在点,使是的中线,求点的坐标;
(3)如图2,在轴正半轴上存在点,使,求点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.
【详解】
由条形统计图中出现频数最大条形最高的数据是在第四组,故众数是2.4(万步);
因图中是按从小到大的顺序排列的,最中间的步数都是2.3(万步),故中位数是2.3(万步).
故选B.
此题考查中位数,条形统计图,解题关键在于看懂图中数据
2、A
【解析】
直接利用分式有意义的条件得出:x﹣1≠0,解出答案.
【详解】
解:∵分式有意义,
∴x﹣1≠0,
解得:x≠1.
∴x满足的条件是:x≠1的实数.
故选A.
此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
3、C
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含开的尽的因数,故A不符合题意;
B、被开方数含分母,故B不符合题意;
C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;
D、被开方数含能开得尽方的因数或因式,故D不符合题意.
故选C.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
4、D
【解析】
根据三角形的中位线的性质和点的坐标,解答即可.
【详解】
过N作NE⊥y轴,NF⊥x轴,
∴NE∥x轴,NF∥y轴,
∵点A(0,2),B(4,0),点N为线段AB的中点,
∴NE=2,NF=1,
∴点N的坐标为(2,1),
故选:D.
本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.
5、A
【解析】
根据分母不为0列式求值即可.
【详解】
由题意得x﹣1≠0,
解得:x≠1.
故选:A.
此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.
6、A
【解析】
根据全等三角形的判定:SAS,AAS,ASA,可得答案.
【详解】
解:由题意,得∠ABC=∠BAD,AB=BA,
A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;
B、在△ABC与△BAD中, ,△ABC≌△BAD(ASA),故B正确;
C、在△ABC与△BAD中, ,△ABC≌△BAD(AAS),故C正确;
D、在△ABC与△BAD中, ,△ABC≌△BAD(SAS),故D正确;
故选:A.
本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
7、C
【解析】
此题涉及的知识点是旋转的性质,由旋转的性质,再根据∠BAC=30°,旋转60°,可得到∠BAC1=90°,结合勾股定理即可求解.
【详解】
解:∵△ABC绕点A逆时针旋转60°得到△AB1C1,
∴∠BAC1=∠BAC+∠CAC1=30°+60°=90°,
AC1=AC=6,
在RtBAC1中,∠BAC=90°,AB=8,AC1=6,
∴,
故本题选择C.
此题重点考查学生对于旋转的性质的理解,也考查了解直角三角形,等腰三角形的性质和含30度角的直角三角形的性质,熟练掌握以上知识点是解题的关键.
8、D
【解析】
根据中垂线定理得出AE=BE,根据三角形周长求出AB,即可得出答案.
【详解】
∵DE是AB的中垂线
∴AE=BE
∵△BCE的周长为8
∴AB+BC=8
∵AB =5
∴BC=3
∵AB=AC
∴AC=5
∴△ABC的周长是:AC+AB+BC=5+5+3=13.
故选A.
本题考查了中垂线定理、等腰三角形的性质,正确解答本题的关键是根据中垂线定理得出AE=BE。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先用勾股定理求出OB的距离,然后用配方法即可求出最小值.
【详解】
∵点 B 的坐标是3m, 4m 4,O是原点,
∴OB=,
∵,
∴OB,
∴OB的最小值是,
故答案为.
本题考查勾股定理求两点间距离,其中用配方法求出最小值是本题的重难点.
10、m>
【解析】
根据图象的增减性来确定(2m-1)的取值范围,从而求解.
【详解】
∵一次函数y=(2m-1)x+1,y随x的增大而增大,
∴2m-1>1,
解得,m>,
故答案是:m>.
本题考查了一次函数的图象与系数的关系.一次函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1.
11、; 4或6
【解析】
(4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;
(4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.
【详解】
解:(4)当n=4时,OA=4,
在Rt△COA中,AC4=CO4+AO4=4.
∵ABCD为正方形,
∴AB=CB.
∴AC4=AB4+CB4=4AB4=4,
∴AB= .
故答案为.
(4)如图所示:过点D作DM⊥y轴,DN⊥x轴.
∵ABCD为正方形,
∴A、B、C、D四点共圆,∠DAC=45°.
又∵∠COA=90°,
∴点O也在这个圆上,
∴∠COD=∠CAD=45°.
又∵OD= ,
∴DN=DM=4.
∴D(-4,4).
在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,
∴△DNA≌△DMC.
∴CM=AN=OC-MO=3.
∵D(-4,4),
∴A(4,0).
∴n=4.
如下图所示:过点D作DM⊥y轴,DN⊥x轴.
∵ABCD为正方形,
∴A、B、C、D四点共圆,∠DAC=45°.
又∵∠COA=90°,
∴点O也在这个圆上,
∴∠AOD=∠ACD=45°.
又∵OD= ,
∴DN=DM=4.
∴D(4,-4).
同理:△DNA≌△DMC,则AN=CM=5.
∴OA=ON+AN=4+5=6.
∴A(6,0).
∴n=6.
综上所述,n的值为4或6.
故答案为4或6.
本题考核知识点:正方形性质、全等三角形性质,圆等. 解题关键点:熟记相关知识点.
12、.
【解析】
根据菱形的性质、折叠的性质,以及∠ABC=120°,可以得到△ABD△BCD都是等边三角形,根据三角形的内角和和平角的意义,可以找出△BGE∽△DFG,对应边成比例,设AF=x、AE=y,由比例式列出方程,解出y即可.
【详解】
解:∵菱形ABCD中,∠ABC=120°,
∴AB=BC=CD=DA,∠A=60°,
∴AB=BC=CD=DA=BD=3+1=4,
∴∠ADB=∠ABD=60°,
由折叠得:AF=FG,AE=EG,∠EGF=∠A=60°,
∵∠DFG+∠DGF=180°-60°=120°,∠BGE+∠DGF=180°-60°=120°,
∴∠DFG=∠BGE,
∴△BGE∽△DFG,
∴ ,
设AF=x=FG,AE=y=EG,则:DF=4-x,BE=4-y,
即: ,
当 时,即:x= ,
当 时,即:x= ,
∴ ,
解得:y1=0舍去,y2=,
故答案为:.
本题考查菱形的性质、折叠的性质、等边三角形的判定和性质以及分式方程等知识,根据折叠和菱形等边三角形的性质进行转化,从而得到关于EG的关系式,是解决问题的关键.
13、-5
【解析】
根据比例的性质,把写成的形式,然后代入已知数据进行计算即可得解.
【详解】
设由已知则
故-5
本题主要考查了比例的基本性质。
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)四边形ABCD是菱形(3)
【解析】
(1)依据条件证即可;
(2)依据四条边都相等的四边形是菱形判定即可;
(3)割补后,图形的面积不变,故正方形的面积就等于菱形的面积,求出菱形面积即可得正方形的边长.
【详解】
(1)证明:在和中,,
,
;
(2)解:四边形ABCD是菱形,理由如下:
,,,
,
四边形ABCD是菱形;
(3)解:,,
,
四边形ABCD的面积,
拼成的正方形的边长.
本题主要考查了三角形的全等的证明、菱形的判定、正方形的性质,正确理解作图步骤获取有用条件是解题的关键.
15、(1)一班的平均得分90,二班的平均得分90(2)一班的卫生成绩高.
【解析】
(1)、(2)利用平均数的计算方法,先求出所有数据的和,然后除以数据的总个数即可求出答案.
【详解】
解:(1)一班的平均得分=(95+85+90)÷3=90,
二班的平均得分=(90+95+85)÷3=90,
(2)一班的加权平均成绩=85×25%+90×35%+95×40%=90.75,
二班的加权平均成绩=95×25%+85×35%+90×40%=89.5,
所以一班的卫生成绩高.
本题考查的是平均数和加权平均数的求法,关键是利用平均数和加权平均数的计算方法解答.
16、(1)7(2)(3)①详见解析;②10
【解析】
(1)按顺序先利用完全平方公式展开,进行二次根式的化简,进行平方运算,然后再按运算顺序进行计算即可;
(2)按顺序先利用平方差公式进行展开,进行二次根式的除法,进行负指数幂的运算,然后再按运算顺序进行计算即可;
(3)①先证明四边形DEBF是平行四边形,然后再根据有一个角是直角的平行四边形是矩形即可得结论;
②先利用勾股定理求出BC长,再根据平行四边形的性质可得AD长,再证明DF=AD即可得.
【详解】
(1)原式=2+2+1-2+4
=7;
(2)原式=4-3++4
=5+=;
(3)①∵四边形ABCD是平行四边形,
∴AB//CD,即BE//DF,
又∵DF=BE,
∴四边形DEBF是平行四边,
又∵DE⊥AB,
∴∠DEB=90°,
∴平行四边形BFDE是矩形;
②∵四边形BFDE是矩形,
∴∠BFD=90°,
∴∠BFC=90°,
∴BC==10,
∵四边形ABCD是平行四边形,
∴AD=BC=10,AB//CD,
∴∠FAB=∠DFA,
∵∠DAF=∠FAB,
∴∠DAF=∠DFA,
∴DF=AD=10.
本题考查了二次根式的混合运算,平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.
17、小明的速度为80米/分.
【解析】
试题分析:设出小明和爸爸的速度,利用时间作为等量关系列方式方程解应用题.
试题解析:
设小明的速度是x米/分,爸爸的速度是2x米/分,由题意得
解得x=80,
经检验,x=80是方程的根,所以小明的速度是80米/分.
点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.
18、(1);(2);(3),.
【解析】
(1)与点重合则点E为(6,3)
(2)作轴,证明:即则点E为(8,3)
(3)分情况解答,在点右侧,过点作轴,证明:;在点左侧,点作轴,证明:
【详解】
解:(1) 与点重合则点E再x轴的位置为2+4=6
.
(2)过点作轴,
∵∠BAD=∠EMD=∠BDE=90°,
∴∠BDA+∠ABD=∠BDA+∠MDE,
∴∠ABD=∠MDE,
∵BD=DE,
,点在线段的中垂线上,.
,.
.
(3)①点在点右侧,如图,
过点作轴,同(2)
设,可得:,
求得:,(舍去)
②点在点左侧,如图,
过点作轴,同上得
设,可得:,
,
求得:,(舍去)
综上所述:,
本题考查正方形的性质,解题关键在于分情况作出垂直线.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据四边形的面积与四边形的面积间的数量关系来求其面积.
【详解】
解:∵四边形中,,,且
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形的面积是.
故答案为:.
本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
20、或10
【解析】
试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.
21、甲
【解析】
根据方差的意义即可求得答案.
【详解】
∵S甲2=1.25,S乙2=3,
∴S甲2<S乙2,
∴甲的成绩比较稳定,
故答案为:甲.
此题考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.
22、
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.
【详解】
解:∵点,关于x轴对称,
∴,
∴.
故答案为:.
此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.
23、(-3,-2)
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(1)4
【解析】
(1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;
(1)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE=,解直角三角形求出EF=1,BF=4,AB=BF=4,BC=AD=1,即可得出答案.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AB∥CD.
∴∠BAF=∠F.
∵AF平分∠BAD,
∴∠BAF=∠DAF.
∴∠F=∠DAF.
∴AD=FD.
(1)解:∵∠ADE=∠CDE=30°,AD=FD,
∴DE⊥AF.
∵tan∠ADE=,
∴AE=1.
∴S平行四边形ABCD=1S△ADE=AE•DE=4.
本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.
25、(1);(2)8.
【解析】
(1)根据二次根式的乘除法和加减法可以解答本题;
(2)根据、的值即可求得所求式子的值.
【详解】
(1)解:原式
;
(2)解:原式
.
本题考查了二次根式的化简求值,分母有理化,解答本题的关键是明确二次根式化简求值的方法.
26、(1),22;(2);(3)
【解析】
(1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;
(2)作轴于,轴于,易得,则,
再将x=4代入得到y=11,所以;
(3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.
【详解】
解:(1)直线沿x轴向右平移2个单位长度,则
y=-2(x-2)-7
=-2x-3
将和联立,得
解得
易得
故答案为:,22;
(2)作轴于,轴于,
∵
∴,,
∵为的中线,
∴,
∵,
∴,
∴,
在中,
当时,,
∴.
(3)由(1)得,,
∴, ,
在轴正半轴上取一点,使,
∵,
∴,
∴,
∵,
∴,
∴,
在中,由勾股定理可得:,
∴.
本题考查了一次函数和几何的综合,熟练掌握一次函数的图象和性质是解题关键.
题号
一
二
三
四
五
总分
得分
门窗
桌椅
地面
一班
85
90
95
二班
95
85
90
相关试卷
这是一份江苏省盐城射阳县联考2025届数学九年级第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省盐城市射阳县九年级数学第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)