江苏省盐城市大丰区城东实验2025届九年级数学第一学期开学质量检测模拟试题【含答案】
展开
这是一份江苏省盐城市大丰区城东实验2025届九年级数学第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为( )
A.30° B.40° C.80° D.120°
2、(4分)如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为( )
A.14B.15C.16D.17
3、(4分)根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
4、(4分)为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是( )
A.方案一B.方案二C.方案三D.方案四
5、(4分)如图,在中,,是边上一条运动的线段(点不与点重合,点不与
点重合),且,交于点,交于点,在从左至右的运动过
程中,设BM=x,和的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致
是( )
A.B.C.D.
6、(4分)某县第一中学学校管理严格、教师教学严谨、学生求学谦虚,三年来中考数学A等级共728人.其中2016年中考的数学A等级人数是200人,2017年、2018年两年中考数学A等级人数的增长率恰好相同,设这个增长率为x,根据题意列方程,得( )
A.B.C.D.
7、(4分)已知反比例函数,下列结论中不正确的是( )
A.图象经过点(-1,-1)B.图象在第一、三象限
C.当时,D.当时,y随着x的增大而增大
8、(4分)在平面直角坐标系中,点P(-2,+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线不经过第一象限,则的取值范围是_____________。
10、(4分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.
11、(4分)一次函数与的图象如图,则的解集是__.
12、(4分)如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
13、(4分)若直角三角形斜边上的高和中线分别是 5 cm 和 6 cm,则面积为________,
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组.
15、(8分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1)求∠ABD的度数;
(2)求线段BE的长.
16、(8分)根据《佛山﹣环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线将串联起狮山、乐平、三水新城、水都基地、白坭等城镇节点,在这项工程中,有一段4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天.求甲、乙两个工程队平均每天各完成多少米?
17、(10分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.
小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.
小明说根据小东所得的数据可以求出CD的长度.
你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.
18、(10分)学校组织初二年级学生去参加社会实践活动,学生分别乘坐甲车、乙车,从学校同时出发,沿同一路线前往目的地.在行驶过程中,甲车先匀速行驶1小时后,提高速度继续匀速行驶,当甲车超过乙车40千米后停下来等候乙车,两车相遇后,甲车和乙车一起按乙车原来的速度匀速行驶到达目的地.如图是甲、乙两车行驶的全过程中经过的路程y(千米)与出发的时间x(小时)之间函数关系图象.根据图中提供的信息,解答下列问题:
(1)甲车行驶的路程为______千米;
(2)乙车行驶的速度为______千米/时,甲车等候乙车的时间为______小时;
(3)甲、乙两车出发________小时,第一次相遇;
(4)甲、乙两车出发________小时,相距20千米.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为_____,面积为_____.
20、(4分)小刚从家到学校的路程为2km,其中一段是lkm的平路,一段是lkm的上坡路.已知小刚在上坡、平路和下坡的骑车速度分别为akm/h,2akm/h,3akm/h,则小刚骑车从家到学校比从学校回家花费的时间多_____h.
21、(4分)若一个直角三角形的其中两条边长分别为6和8,则第三边长为_____.
22、(4分)分解因式:____.
23、(4分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,1),交y轴于点B(1,n),且m,n满足+(n﹣12)2=1.
(1)求直线AB的解析式及C点坐标;
(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;
(3)如图2,点E(1,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.
25、(10分)如图,城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡、从城往、两乡运肥料的费用分别是元/吨和元/吨;从城往、两多运肥料的费用分别是元/吨和元/吨,现乡需要肥料吨,乡需要肥料吨,怎样调运可使总运费最少?
26、(12分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.
(1)求这个反比例函数的表达式;
(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?
(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】【分析】根据四边形的内角和为360度结合各角的比例即可求得答案.
【详解】∵四边形内角和360°,
∴设∠A=x°,则有x+2x+3x+3x=360,
解得x=40,
则∠B=80°,
故选B.
【点睛】本题考查了多边形的内角和,根据四边形内角和等于360°列出方程是解题关键.
2、C
【解析】
根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=1,求出即可:
∵四边形ABCD是菱形,∴AB=BC.
∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=1.
∴正方形ACEF的周长是AC+CE+EF+AF=1×1=2.故选C.
3、A
【解析】
原方程变形为:x²-2x=0,
∵△=(-2)²- 4×1×0=4>0,
∴原方程有两个不相等的实数根.
故选A.
4、D
【解析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.
【详解】
解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.
故选:D.
此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.
5、B
【解析】
【分析】不妨设BC=2a,∠B=∠C=α,BM=x,则CN=a-x,根据二次函数即可解决问题.
【详解】不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a−x,
则有S阴=y=⋅x⋅xtanα+ (a−x)⋅(a−x)tanα
=tanα(m2+a2−2ax+x2)
=tanα(2x2−2ax+a2)
∴S阴的值先变小后变大,
故选:B
【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.
6、B
【解析】
用增长率x分别表示出2017年和2018年中考数学A等级的人数,再根据三年来中考数学A等级共728人即可列出方程.
【详解】
解:2017年和2018年中考数学A等级的人数分别为:、,根据题意,得:.
故选:B.
本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题关键.
7、D
【解析】
根据反比例函数的性质,利用排除法求解.
【详解】
解:A、x=-1,y==-1,∴图象经过点(-1,-1),正确;
B、∵k=1>0,∴图象在第一、三象限,正确;
C、∵k=1>0,∴图象在第一象限内y随x的增大而减小,∴当x>1时,0<y<1,正确;
D、应为当x<0时,y随着x的增大而减小,错误.
故选:D.
本题考查了反比例函数的性质,当k>0时,函数图象在第一、三象限,在每个象限内,y的值随x的值的增大而减小.
8、B
【解析】
∵-20,+10,
∴点P (-2,+1)在第二象限,
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
当m-3>0时,直线均经过第一象限;当m-3<0时,直线与y轴交点≤0时不经过第一象限.
【详解】
解:当m-3>0,即m>3时,直线均经过第一象限,不合题意,则m<3;
当m<3时,只有-3m+1≤0才能使得直线不经过第一象限,解得,
综上,的取值范围是:.
本题考查了一次函数系数与象限位置的关系,注意分类讨论.
10、
【解析】
利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.
【详解】
平分 ,
.
平分 ,
.
.
同理可得:
;
......
本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.
11、
【解析】
不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.
【详解】
解:不等式的解集是.
故答案为:.
本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、1.
【解析】
根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
【详解】
∵菱形ABCD的顶点C(-1,0),点B(0,2),
∴点A的坐标为(-1,4),点D坐标为(-2,2),
∵D(n,2),
∴n=-2,
当y=4时,-x+5=4,
解得x=2,
∴点A向右移动2+1=3时,点A在MN上,
∴m的值为3,
∴m+n=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
13、30cm1
【解析】
根据直角三角形的斜边上中线性质求出斜边长,然后根据三角形的面积解答即可.
【详解】
解:∵直角三角形斜边上的中线是6cm,
∴斜边长为11cm,
∴面积为:cm1,
故答案为:30cm1.
本题考查了直角三角形斜边上中线性质的应用,解此题的关键是根据性质求出斜边的长,注意:直角三角形斜边上的中线等于斜边的一半.
三、解答题(本大题共5个小题,共48分)
14、1≤x<.
【解析】
分别求出各不等式的解集,再求出其公共解集即可.
【详解】
解不等式①,得:x≥1,
解不等式②,得:x<,
所以不等式组的解集为1≤x<.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
15、(1)∠ABD=60°;(3)BE=1.
【解析】
(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD为等边三角形.
∴∠ABD=60°.
(3)由(1)可知BD=AB=3.
又∵O为BD的中点,
∴OB=3.
∵OE⊥AB,∠ABD=60°,
∴∠BOE=30°.
∴.
16、甲工程队平均每天完成1米,乙工程队平均每天完成100米.
【解析】
设乙工程队平均每天完成x米,则甲工程队平均每天完成2x米,根据工作时间=总工作量÷工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设乙工程队平均每天完成x米,则甲工程队平均每天完成2x米,
根据题意得:,
解得:x=100,
经检验,x=100是原分式方程的解,且符合题意,
∴2x=1.
答:甲工程队平均每天完成1米,乙工程队平均每天完成100米.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
17、同意,CD=13 m.
【解析】
直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.
【详解】
同意
连接BD,如图
∵AB=AD=5(m),∠A=60°
∴△ABD是等边三角形
∴BD=AB=5(m),∠ABD=60°
∴∠ABC=150°,
∴∠CBD=∠ABC-∠ABD=150°-60°=90°
在Rt△CBD中,BD=5(m),BC=12(m),
∴(m)
答:CD的长度为13m.
此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD是等边三角形是解题关键.
18、560 80 0.5 2 1, 3,4.25.
【解析】
(1)根据函数图象中的数据可以写出甲行驶的路程;
(2)根据函数图象中的数据可以求得乙车行驶的速度和甲等候乙车的时间;
(3)根据函数图象中的数据可以计算出甲、乙两车第一次相遇的时间;
(4)根据题意可以计算出两车相距20千米时行驶的时间.
【详解】
(1)由图象可得,
甲行驶的路程为560千米,
故答案为: 560;
(2) 乙车行驶的速度为:5607=80千米/时, 甲车等候乙车的时间为:4080=0.5小时,
故答案为:80,0.5;
(3) a=32080=4, c=320+40=360,
当时,甲车的速度是: (360-60) (4-1) =100千米/时,
设甲、乙两车c小时时,两车第一次相遇,80c=60+100 (c-1),
解得,c=2,
故答案为:2;
(4) 当甲、乙两车行驶t小时时,相距20千米,
当时,80t-60t=20,得t=1,
当时,,解得t=1(舍去),t=3,
当时,360-80t=20,解得t=4.25,
综上,当甲、乙两车行驶1小时、3小时或4.25小时,两车相距20千米,
故答案为:1,3,4.25.
此题考查一次函数的应用,正确理解函数图象的意义,根据图象提供的信息正确计算是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、39cm 60cm1
【解析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=AD=CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.
【详解】
∵BE、CE分别平分∠ABC、∠BCD,
∴∠1=∠3=∠ABC,∠DCE=∠BCE=∠BCD,
在▱ABCD中,AB=CD,AD=BC,AD∥BC,AB∥CD,
∵AD∥BC,AB∥CD,
∴∠1=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,
∴∠1=∠1,∠DCE=∠CED,∠3+∠BCE=90°,
∴AB=AE,CD=DE,∠BEC=90°,
在Rt△BCE中,根据勾股定理得:BC=13cm,
∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;
作EF⊥BC于F,
根据直角三角形的面积公式得:EF=cm,
∴平行四边形ABCD的面积=BC·EF==60cm1,
故答案为39cm,60cm1.
本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
20、
【解析】
本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程、速度所用时间不变.题中的等量关系是:从家到学校的路程为2千米;去时上坡时间+平路时间=从家到学校的总时间;回时下坡时间+平路时间=从学校回家花费的时间,据此可列式求解.
【详解】
小刚骑车从家到学校比从学校回家花费的时间多:( )-()=-=h,
故答案为:
本题考查列代数式,解答本题的关键读懂题意,找出合适的数量关系.
21、10或2
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
设第三边为x,
(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,
(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得.
故第三边长为10或.
故答案为:10或.
本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
22、(3x+1)2
【解析】
原式利用完全平方公式分解即可.
【详解】
解:原式=(3x+1)2,
故答案为:(3x+1)2
此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.
23、
【解析】
利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.
【详解】
平分 ,
.
平分 ,
.
.
同理可得:
;
......
本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,1);(3)点P的坐标(,)
【解析】
(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;
(2)画出图象,由CD⊥AB知可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;
(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.
【详解】
解:(1)∵+(n﹣12)2=1,
∴m=6,n=12,
∴A(6,1),B(1,12),
设直线AB解析式为y=kx+b,
则有,解得,
∴直线AB解析式为y=-2x+12,
∵直线AB过点C(a,a),
∴a=-2a+12,∴a=4,
∴点C坐标(4,4).
(2)过点C作CD⊥AB交x轴于点D,如图1所示,
设直线CD解析式为y=x+b′,把点C(4,4)代入得到b′=2,
∴直线CD解析式为y=x+2,
∴点D坐标(-4,1).
(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,
图2
∵直线EC解析式为y=x-2,直线CF解析式为y=-x+,
∵×(-)=-1,
∴直线CE⊥CF,
∵EC=2,CF=2,
∴EC=CF,
∴△FCE是等腰直角三角形,
∴∠FEC=45°,
∵直线FE解析式为y=-5x-2,
由解得,
∴点P的坐标为().
本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F(-2,8)是解题的突破口.
25、从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往的D乡60吨,此时总运费最少,总运费最小值是10040元.
【解析】
设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和吨,然后根据总运费和运输量的关系列出方程式,最后根据x的取值范围求出y的最小值.
【详解】
解:设总运费为元,城运往乡的肥料量为吨,则运往乡的肥料量为吨;城运往、乡的肥料量分别为吨和吨.
由总运费与各运输量的关系可知,反映与之间的函数关系为
.
化简得
,随的增大而增大,
∴当时,的最小值.
因此,从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元.
故答案为:从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往的D乡60吨,此时总运费最少,总运费最小值是10040元.
本题考查一次函数的应用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.
26、(1);(2) 80吨货物;(3)6名.
【解析】
(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;
(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;
(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.
【详解】
解:(1)设y与x之间的函数表达式为y=,
根据题意得:50=,
解得k=400,
∴y与x之间的函数表达式为y=;
(2)∵x=5,
∴y=400÷5=80,
解得:y=80;
答:平均每天至少要卸80吨货物;
(3)∵每人一天可卸货:50÷10=5(吨),
∴80÷5=16(人),16﹣10=6(人).
答:码头至少需要再增加6名工人才能按时完成任务.
本题考查了反比例函数的应用,解题的关键是熟练的掌握反比例函数的性质.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份江苏省盐城市大丰区第一共同体2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省盐城东台市实验中学2025届九年级数学第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省盐城市大丰区实验初级中学数学九年级第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。