|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省扬州市教院2025届九上数学开学调研模拟试题【含答案】
    立即下载
    加入资料篮
    江苏省扬州市教院2025届九上数学开学调研模拟试题【含答案】01
    江苏省扬州市教院2025届九上数学开学调研模拟试题【含答案】02
    江苏省扬州市教院2025届九上数学开学调研模拟试题【含答案】03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市教院2025届九上数学开学调研模拟试题【含答案】

    展开
    这是一份江苏省扬州市教院2025届九上数学开学调研模拟试题【含答案】,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于( )
    A.4B.3C.2D.1
    2、(4分)一元二次方程x2﹣8x+20=0的根的情况是( )
    A.没有实数根 B.有两个相等的实数根
    C.只有一个实数根 D.有两个不相等的实数根
    3、(4分)下列汽车标志中,是中心对称图形的是( )
    A.B.C.D.
    4、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若,BD=4,则菱形ABCD的周长为( )
    A.4B.C.D.28
    5、(4分)罗老师从家里出发,到一个公共阅报栏看了一会儿报后,然后回家.右图描述了罗老师离家的距离(米与时间(分之间的函数关系,根据图象,下列说法错误的是
    A.罗老师离家的最远距离是400米
    B.罗老师看报的时间为10分钟
    C.罗老师回家的速度是40米分
    D.罗老师共走了600米
    6、(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
    A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0
    7、(4分)在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,1.则这8人体育成绩的中位数是( )
    A.47B.48.5C.49D.49.5
    8、(4分)如图,直线与的交点的横坐标为-2,则关于的不等式的取值范围( )
    A.x>-2B.x<-2C.-3二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为_____
    10、(4分)甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:,则成绩较稳定的是_______(填“甲”或“乙”).
    11、(4分)已知直角三角形中,分别以为边作三个正方形,其面积分别为,则__________(填“”,“”或“”)
    12、(4分)王明在计算一道方差题时写下了如下算式:,则其中的____________.
    13、(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)一个不透明的袋子里装有黑白两种颜色的球其40只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:
    (1)摸到黑球的频率会接近 (精确到0.1);
    (2)估计袋中黑球的个数为 只:
    (3)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了 个黑球.
    15、(8分)已知结论:在直角三角形中,30°所对的直角边是斜边的一半,请利用这个结论进行下列探究活动.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=,D为AB中点,P为AC上一点,连接PD,把△APD沿PD翻折得到△EPD,连接CE.
    (1)AB=_____,AC=______.
    (2)若P为AC上一动点,且P点从A点出发,沿AC以每秒一单位长度的速度向C运动,设P点运动时间为t秒.
    ①当t=_____秒时,以A、P、E、D、为顶点可以构成平行四边形.
    ②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
    16、(8分)如图,在平面直角坐标系中,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.
    (1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;
    (2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.
    17、(10分)已知,正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线,分别交AB、CD于点M、N.
    (1)如图,求证:;
    (2)如图,当点F为AE中点时,连接正方形的对角线BD,MN与BD交于点G,连接BF,求证:;
    (3)如图,在(2)的条件下,若,,求BM的长度.
    18、(10分)如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
    (1)求m和b的数量关系;
    (2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;
    (3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平行四边形中,对角线相交于点,且.已知,则____.
    20、(4分)已知(m,n)是函数y=-与y=3x+9的一个交点,则-的值为______.
    21、(4分)如图,延长正方形的边到,使,则________度.
    22、(4分)使函数 有意义的 的取值范围是________.
    23、(4分)在一次智力抢答比赛中,四个小组回答正确的情况如下图.这四个小组平均正确回答__________道题目?(结果取整数)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知正比例函数y1=mx的图象与反比例函数y1=(m为常数,m≠0)的图象有一个交点的横坐标是1.
    (1)求m的值;
    (1)写出当y1<y1时,自变量x的取值范围.
    25、(10分)甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。根据这些材料,请你回答下列问题:
    (1)在图①中,“7分”所在扇形的圆心角等于_______
    (2)求图②中,“8分”的人数,并请你将该统计图补充完整。

    (3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?
    (4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
    26、(12分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.
    (1)请补全下表:
    (2)填空:
    由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出.
    (3) 两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.
    【详解】
    延长BD交AC于H,
    ∵AD平分∠BAC,BD⊥AD,
    ∴BD=DH,AH=AB=12,
    ∴HC=AC﹣AH=4,
    ∵M是BC中点,BD=DH,
    ∴MD=CH=2,
    故选C.
    本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    2、A
    【解析】
    先计算出△,然后根据判别式的意义求解.
    【详解】
    ∵△=(-8)2-4×20×1=-16<0,
    ∴方程没有实数根.
    故选A.
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    3、D
    【解析】
    根据中心对称图形的概念即可解答.
    【详解】
    选项A,旋转180°,与原图形不能够完全重合,不是中心对称图形;
    选项B,旋转180°,不能与原图形能够完全重合,不是中心对称图形;
    选项C,旋转180°,不能与原图形能够完全重合,不是中心对称图形;
    选项D,旋转180°,能与原图形能够完全重合,是中心对称图形;
    故选D.
    本题考查了中心对称图形的概念,熟练运用中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形)是解决问题的关键.
    4、C
    【解析】
    首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.
    【详解】
    解:∵E,F分别是AB,BC边上的中点,EF=,
    ∴AC=2EF=2,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=AC=,OB=BD=2,
    ∴AB==,
    ∴菱形ABCD的周长为4.
    故选C.
    5、D
    【解析】
    根据函数图象中的数据可以判断各个选项中的说法是否正确.
    【详解】
    解:由图象可得,
    罗老师离家的最远距离是400米,故选项正确,
    罗老师看报的时间为分钟,故选项正确,
    罗老师回家的速度是米分,故选项正确,
    罗老师共走了米,故选项错误,
    故选:.
    本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    6、B
    【解析】
    试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
    ∴k<0,b>0,
    故选B.
    考点:一次函数的性质和图象
    7、B
    【解析】
    将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,由此计算即可.
    【详解】
    这组数据的中位数为.
    故选:B.
    本题考查了中位数的知识,解答本题的关键是掌握中位数的定义,注意在求解前观察:数据是否按大小顺序排列.
    8、C
    【解析】
    解:∵直线与的交点的横坐标为﹣2,
    ∴关于x的不等式的解集为x<﹣2,
    ∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x>﹣3,
    ∴>0的解集是﹣3<x<﹣2,
    故选C.
    本题考查一次函数与一元一次不等式.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1.5
    【解析】
    ∵-2<<1,
    ∴x=时,y=x-1=,
    故答案为.
    10、乙.
    【解析】
    方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
    【详解】
    解:∵S甲2=1.61>S乙2=1.51,∴成绩较稳定的是是乙.
    本题考查方差的意义.方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
    11、
    【解析】
    由勾股定理得出AC2+BC2=AB2,得出S1+S2=S3,可得出结果.
    【详解】
    解:∵∠ACB=90°,
    ∴AC2+BC2=AB2,
    ∴S1+S2=S3,
    故答案为:=.
    本题考查了勾股定理、正方形面积的计算;熟练掌握勾股定理,由勾股定理得出正方形的面积关系是解决问题的关键.
    12、1.865
    【解析】
    先计算出4个数据的平均数,再计算出方差即可.
    【详解】
    ∵,

    =
    =
    =
    =
    =1.865.
    故答案为:1.865.
    此题主要考查了方差的计算,求出平均数是解决此题的关键.
    13、
    【解析】
    由C′D∥BC,可得比例式,设AB=a,构造方程即可.
    【详解】
    设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,
    ∵C′D∥BC,
    ∴,即,
    解得a=−1− (舍去)或−1+.
    所以AB长为.
    故答案为.
    本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.
    三、解答题(本大题共5个小题,共48分)
    14、(1)0.5;(2)20;(3)10
    【解析】
    (1)根据统计图找到摸到黑球的频率稳定到的常数即为本题的答案;
    (2)根据(1)的值求得答案即可;
    (3)设向袋子中放入了黑个红球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.
    【详解】
    解:(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.5附近,
    故摸到黑球的频率会接近0.5,
    故答案为:0.5;
    (2)∵摸到黑球的频率会接近0.5,
    ∴黑球数应为球的总数的一半,
    ∴估计袋中黑球的个数为20只,
    故答案为:20;
    (3)设放入黑球x个,
    根据题意得:=0.6,
    解得x=10,
    经检验:x=10是原方程的根,
    故答案为:10;
    本题主要考查概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解题的关键.
    15、(1)4,6;(2)①;②存在,t=2或t=6.
    【解析】
    (1)根据含30°角的直角三角形性质可得AB的长,利用勾股定理即可求出AC的长;(2)①根据平行四边形的性质可得AD//PE,AD=PE,根据折叠性质可得PE=AP,即可得AP=AD,由D为AB中点可得AD的长,即可得AP的长,进而可求出t的值;②分两种情况讨论:当BD为边时,设DE与PC相交于O,根据三角形内角和可得∠B=60°,根据平行四边形的性质可得CE=BD,CE//BD,BC//DE,可得∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,根据折叠性质可得∠ADP=∠EDP=30°,AP=PE,即可证明∠ADP=∠A,可得AP=PD=PE,可得∠PED=∠PDE=30°,即可得∠PEC=90°,根据含30°角的直角三角形的性质可得PC=2PE,利用勾股定理列方程可求出PE的长,即可得AP的长;当BD为对角线时,可证明平行四边形BCDE是菱形,根据菱形的性质可得∠DCE=30°,可证明DE=AD,∠ADC=∠CDE=120°,利用SAS可证明△ACD≌△ECD,可得AC=CE,根据翻折的性质可证明点P与点C重合,根据AC的长即可求出t值,综上即可得答案.
    【详解】
    (1)∵∠C=90°,∠A=30°,BC=,
    ∴AB=2BC=4,
    ∴AC==6.
    故答案为:4,6
    (2)①如图,∵D为AB中点,
    ∴AD=BD=AB,
    ∵BC=AB,
    ∴AD=BD=BC=,
    ∵ADEP是平行四边形,
    ∴AD//PE,AD=PE,
    ∵△APD沿PD翻折得到△EPD,
    ∴AP=PE,
    ∴AP=AD=,
    ∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,
    ∴t=.
    故答案为:
    ②存在,理由如下:
    i如图,当BD为边时,设DE与PC相交于O,
    ∵∠A=30°,∠ACB=90°,
    ∴∠B=60°,
    ∵四边形DBCE是平行四边形,
    ∴CE=BD,CE//BD,DE//BC,
    ∴∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,
    ∵△APD沿PD翻折得到△EPD,
    ∴∠ADP=∠EDP=30°,AP=PE,
    ∴∠PAD=∠PDA=30°,
    ∴AP=PD=PE,
    ∴∠PED=∠PDE=30°,
    ∴∠PEC=∠PED+∠DEC=90°,
    ∵∠ECP=30°,
    ∴PC=2PE,
    ∴PC2=PE2+EC2,即4PE2=PE2+()2
    解得:PE=2或PE=-2(舍去),
    ∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,
    ∴t=2.
    ii当BD为对角线时,
    ∵BC=BD=AD,∠B=60°,
    ∴△BCD都是等边三角形,
    ∴∠ACD=30°,
    ∵四边形DBCE是平行四边形,
    ∴平行四边形BCDE为菱形,
    ∴DE=AD,∠ADC=∠CDE=120°,
    又∵CD=CD,
    ∴△ACD≌△ECD,
    ∴AC=CE,
    ∴△ECD是△ACD沿CD翻折得到,
    ∵△APD沿PD翻折得到△EPD,
    ∴点P与点C重合,
    ∴AP=AC=6.
    ∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,
    ∴t=6.
    故当t=2或t=6时,以B、C、E、D为顶点的四边形是平行四边形.
    本题考查含30°角的直角三角形的性质及平行四边形的性质,在直角三角形中,30°所对的直角边是斜边的一半;熟练掌握相关性质是解题关键.
    16、(1),;(2).
    【解析】
    (1)先将点C坐标代入,利用待定系数法可求得y1的解析式,继而求得点A的坐标,点B坐标,根据B、C坐标利用待定系数法即可求得y2的解析式;
    (2)分别过点作轴于点,轴于点,连接,由三角形中线的性质可得,再根据反比例函数的比例系数的几何意义可得,从而可得,设点的横坐标为,则点坐标表示为、,继而根据梯形的面积公式列式进行计算即可.
    【详解】
    (1)由已知,点在的图象上,
    ∴,∴,
    ∵点 的横坐标为,∴点为,
    ∵点与点关于原点对称,
    ∴为,
    把,代入得,
    解得:,
    ∴;
    (2)分别过点作轴于点,轴于点,连接,
    ∵为中点 ,

    ∵点在双曲线上,

    ∴ ,
    设点的横坐标为,
    则点坐标表示为、,
    ∴,
    解得 .
    本题考查了反比例函数与一次函数综合,涉及了待定系数法,反比例函数k的几何意义,熟练掌握和灵活运用相关知识是解题的关键.
    17、(1)见解析;(2)见解析;(3).
    【解析】
    (1)由正方形的性质得出∠B=90°,得出∠BAE+∠AEB=90°,由垂直的性质得出∠BAE+∠AMN=90°,即可得出结论;
    (2)连接AG、EG、CG,证明△ABG≌△CBG得出AG=CG,∠GAB=∠GCB,证出EG=CG,由等腰三角形的性质得出∠GEC=∠GCE,证出∠AGE=90°,由直角三角形斜边上的中线性质得出BF=AE,FG=AE,即可得出结论;
    (3)过G作交AD于点P,交BC于点Q,证明DP=PG=2,连接ME,证明MN是AE的垂直平分线,得,,再证明得,得,进而得,中,由勾股定理得,代入相关数据,从而得出结论.
    【详解】
    (1)(1)证明:∵四边形ABCD是正方形,
    ∴∠B=90°,
    ∴∠BAE+∠AEB=90°,
    ∵MN⊥AE于F,
    ∴∠BAE+∠AMN=90°,
    ∴∠AEB=∠AMN;
    (2)证明:连接AG、EG、CG,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABG=∠CBG=45°,∠ABE=90°,
    在△ABG和△CBG中,

    ∴△ABG≌△CBG(SAS),
    ∴AG=CG,∠GAB=∠GCB,
    ∵MN⊥AE于F,F为AE中点,
    ∴AG=EG,
    ∴EG=CG,
    ∴∠GEC=∠GCE,
    ∴∠GAB=∠GEC,
    ∵∠GEB+∠GEC=180°,
    ∴∠GEB+∠GAB=180°,
    ∵四边形ABEG的内角和为360°,∠ABE=90°,
    ∴∠AGE=90°,
    在Rt△ABE 和Rt△AGE中,AE为斜边,F为AE的中点,
    ∴BF=AE,FG=AE,
    ∴BF=FG;
    (3)过G作交AD于点P,交BC于点Q,则 ,,
    中,, ,
    ∴ ,

    ∵,
    ∴ ,
    ∴ 即
    连接ME ∵于F,F为AE的中点,
    ∴MN是AE的垂直平分线
    ∴,
    由(2)知 ,,
    ∴,
    又,
    ∴,
    ∴ ,
    ∴ ,
    又,




    ∴四边形PDCQ为矩形


    ∵E是BC中点


    ∴ 即




    中,由勾股定理得
    ∴ 解得

    本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、直角三角形斜边上的中线性质、勾股定理等知识;本题综合性强,有一定难度.
    18、(1)b=3m;(2)个单位长度;(3)P(0,3)或(2,2)
    【解析】
    (1)易证△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得点D坐标,代入解析式可求m和b的数量关系;
    (2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;
    (3)分两种情况讨论,由等腰直角三角形的性质可求点P坐标.
    【详解】
    解:(1)直线y=﹣x+b中,x=0时,y=b,
    所以,B(0,b),又C(m,0),
    所以,OB=b,OC=m,
    在和中
    ∴点
    (2)∵m=1,
    ∴b=3,点C(1,0),点D(4,1)
    ∴直线AB解析式为:
    设直线BC解析式为:y=ax+3,且过(1,0)
    ∴0=a+3
    ∴a=-3
    ∴直线BC的解析式为y=-3x+3,
    设直线B′C′的解析式为y=-3x+c,把D(4,1)代入得到c=13,
    ∴直线B′C′的解析式为y=-3x+13,
    当y=3时,
    当y=0时,
    ∴△BCD平移的距离是个单位.
    (3)当∠PCD=90°,PC=CD时,点P与点B重合,
    ∴点P(0,3)
    如图,当∠CPD=90°,PC=PD时,
    ∵BC=CD,∠BCD=90°,∠CPD=90°
    ∴BP=PD
    ∴点P是BD的中点,且点B(0,3),点D(4,1)
    ∴点P(2,2)
    综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.
    本题考查一次函数综合题、等腰直角三角形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移性质解决问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    直接构造直角三角形,再利用平行四边形的性质结合勾股定理得出AC的长,利用平行四边形的性质求得AO的长即可.
    【详解】
    解:延长CB,过点A作AE⊥CB交于点E,
    ∵四边形ABCD是平行四边形,
    ∴AB=DC=5,BC=AD=3,DC∥AB,
    ∵AD⊥CB,AB=5,BC=3,
    ∴BD=4,
    ∵DC∥AB,∠ADB=90°,
    ∴∠DAB=90°,
    可得:∠ADB=∠DAE=∠ABE=90°,
    则四边形ADBE是矩形,
    故DB=EA=4,
    ∴CE=6,
    ∴AC=,
    ∴AO=.
    故答案为:.
    此题主要考查了勾股定理以及平行四边形的性质,正确作出辅助线是解题关键.
    20、-
    【解析】
    根据函数解析式得出mn=-,n-3m=9,代入变形后代数式求出即可.
    【详解】
    解:∵(m,n)是函数y=-与y=3x+9的一个交点,
    ∴mn=-,n-3m=9,
    ∴-===-.
    故答案为:-.
    本题考查了反比例函数和一次函数的交点问题,以及分式的运算,主要考查学生的理解能力和计算能力.
    21、22.5
    【解析】
    连接BD,根据等边对等角及正方形的性质即可求得∠E的度数.
    【详解】
    连接BD,如图所示:
    则BD=AC
    ∵BE=AC
    ∴BE=BD
    ∴∠E=(180°-90°-45)°=22.5°.
    故答案是:.
    考查到正方形对角线相等的性质.
    22、 且
    【解析】
    根据被开方数是非负数且分母不能为零,可得答案.
    【详解】
    解:由题意,得

    解得x>-3且.
    故答案为:x>-3且.
    本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.
    23、1
    【解析】
    先求出四个小组回答的总题目数,然后除以4即可.
    【详解】
    解:这四个小组平均正确回答题目数
    (8+1+16+10)≈1(道),
    故答案为:1.
    本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)m=1;(1)x<﹣1或0<x<1.
    【解析】
    (1)把交点的横坐标代入函数解析式,列出一元一次方程,求解即可;
    (1)根据题意列出二元一次方程组,解方程组即可.
    【详解】
    解:(1)∵正比例函数y1=mx的图象与反比例函数y1=(m为常数,且m≠0)的图象有一个交点的横坐标是1,
    ∴y1=1m,y1=,
    ∵y1=y1,
    ∴1m=,
    解得,m=1;
    (1)由(1)得:正比例函数为y1=1x,反比例函数为y1=;
    解方程组得: 或
    ∴这两个函数图象的交点坐标为(1,4)和(﹣1,﹣4),
    当y1<y1时,自变量x的取值范围为x<﹣1或0<x<1.
    本题考查的是反比例函数与一次函数交点问题,熟练掌握反比例函数与一次函数的性质是解题的关键.
    25、(1)144°;(2)3人,补图见解析;(3)8.3分,7分,乙校;(4)甲校.
    【解析】
    分析:(1)利用360°减去其它各组对应的圆心角即可求解;
    (2)首先求得乙校参赛的人数,即可求得成绩是8分的人数,从而将条形统计图补充完整;
    (3)首先求得得分是9分的人数,然后根据平均数公式和中位数的定义求解;
    (4)只要比较每个学校前8名的成绩即可.
    详解:(1)“7分”所在扇形的圆心角等于360°-90°-72°-54°=144°;
    (2)乙校参赛的总人数是:4÷=20(人),
    则成绩是8分的人数是:20-8-4-5=3(人).

    (3)甲校中得分是9分的人数是:20-11-8=1(人).
    则甲校的平均分是:=8.3(分),
    甲校的中位数是:7分;
    两校的平均数相同,但乙校的中位数大于甲校的中位数,说明乙校的成绩高于甲校的成绩.
    (4)甲得分是10分的正好有8人,而乙班得分是10分的有5人,不足8人,则应选择甲校.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    26、(1);;;;(2)120;30;α;(3)两个带阴影的三角形面积相等,证明见解析.
    【解析】
    分析:(1)过D作DE⊥AB于点E,当α=45°时,可求得DE,从而可求得菱形的面积S,同理可求当α=60°时S的值,当α=120°时,过D作DF⊥AB交BA的延长线于点F,则可求得DF,可求得S的值,同理当α=135°时S的值;
    (2)根据表中所计算出的S的值,可得出答案;
    (3)将△ABO沿AB翻折得到菱形AEBO,将△CDO沿CD翻折得到菱形OCFD.利用(2)中的结论,可求得△AOB和△COD的面积,从而可求得结论.
    详解:(1)当α=45°时,如图1,过D作DE⊥AB于点E,
    则DE=AD=,
    ∴S=AB•DE=,
    同理当α=60°时S=,
    当α=120°时,如图2,过D作DF⊥AB,交BA的延长线于点F,
    则∠DAE=60°,
    ∴DF=AD=,
    ∴S=AB•DF=,
    同理当α=150°时,可求得S=,
    故表中依次填写:;;;;
    (2)由(1)可知S(60°)=S(120°),
    S(150°)=S(30°),
    ∴S(180°-α)=S(α)
    故答案为:120;30;α;
    (3)两个带阴影的三角形面积相等.
    证明:如图3将△ABO沿AB翻折得到菱形AMBO,将△CDO沿CD翻折得到菱形OCND.
    ∵∠AOD=∠COB=90°,
    ∴∠COD+∠AOB=180°,
    ∴S△AOB=S菱形AMBO=S(α)
    S△CDO=S菱形OCND=S(180°-α)
    由(2)中结论S(α)=S(180°-α)
    ∴S△AOB=S△CDO.
    点睛:本题为四边形的综合应用,涉及知识点有菱形的性质和面积、解直角三角形及转化思想等.在(1)中求得菱形的高是解题的关键,在(2)中利用好(1)中的结论即可,在(3)中把三角形的面积转化成菱形的面积是解题的关键.本题考查知识点较基础,难度不大.
    题号





    总分
    得分
    批阅人
    甲校成绩统计表
    成绩
    7分
    8分
    9分
    10分
    人数
    11
    0
    8
    30°
    45°
    60°
    90°
    120°
    135°
    150°
    S
    1
    相关试卷

    江苏省扬州市广陵区2024-2025学年九上数学开学调研模拟试题【含答案】: 这是一份江苏省扬州市广陵区2024-2025学年九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省扬州市部分区、县2025届数学九上开学调研模拟试题【含答案】: 这是一份江苏省扬州市部分区、县2025届数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省扬州市教育科研究院九上数学开学达标检测模拟试题【含答案】: 这是一份2024年江苏省扬州市教育科研究院九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map