|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省扬州市梅岭中学2025届九年级数学第一学期开学统考试题【含答案】
    立即下载
    加入资料篮
    江苏省扬州市梅岭中学2025届九年级数学第一学期开学统考试题【含答案】01
    江苏省扬州市梅岭中学2025届九年级数学第一学期开学统考试题【含答案】02
    江苏省扬州市梅岭中学2025届九年级数学第一学期开学统考试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市梅岭中学2025届九年级数学第一学期开学统考试题【含答案】

    展开
    这是一份江苏省扬州市梅岭中学2025届九年级数学第一学期开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若,则的值用、可以表示为 ( )
    A.B.C.D.
    2、(4分)在▱ABCD中,∠A+∠C=130°,则∠A的度数是( )
    A.50°B.65°C.70°D.80°
    3、(4分)在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( )
    A.可能不是平行四边形B.一定是菱形
    C.一定是正方形D.一定是矩形
    4、(4分)将点向左平移个单位长度,在向上平移个单位长度得到点,则点的坐标是( )
    A.B.C.D.
    5、(4分)如图,在 中, 的垂直平行线交 于 点,则 的度数为( ).

    A.B.C.D.
    6、(4分)下列调查适合普查的是( )
    A.调查2011年3月份市场上西湖龙井茶的质量
    B.了解萧山电视台188热线的收视率情况
    C.网上调查萧山人民的生活幸福指数
    D.了解全班同学身体健康状况
    7、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,下列结论不一定成立的是
    A.
    B.
    C.
    D.
    8、(4分)已知点和点在反比例函数的图象上,若,则( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.
    10、(4分)如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.
    11、(4分)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=1.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…;以此类推,则第2019个三角形的周长是_____.
    12、(4分)如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.
    13、(4分)若代数式在实数内范围有意义,则 x 的取值范围是_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.
    (1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;
    (2)将正方形EFGH绕点E顺时针方向旋转.
    ①如图2,判断BH和AF的数量关系,并说明理由;
    ②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.

    15、(8分)解一元二次方程:(1);(2).
    16、(8分)为增强学生的身体素质,某校长年坚持全员体育锻炼,并定期进行体能测试,下图是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,画出的频数分布直方图的一部分,已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数9.
    (1)请将频数分布直方图补充完整;
    (2)该班参加这次测试的学生有多少人?
    (3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?
    17、(10分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
    (1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
    (2)求原来的路线AC的长.
    18、(10分)如图,直线y=x+m与x轴交于点A(-3,0),直线y=-x+2与x轴、y轴分别交于B、C两点,并与直线y=x+m相交于点D,
    (1)点D的坐标为 ;
    (2)求四边形AOCD的面积;
    (3)若点P为x轴上一动点,当PD+PC的值最小时,求点P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)根据图中的程序,当输入数值﹣2时,输出数值为a;若在该程序中继续输入数值a时,输出数值为_____.
    20、(4分)如图,在中,对角线与相交于点,是边的中点,连结.若,,则的度数为_______.
    21、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3).若直线y = 2x与线段AB有公共点,则n的取值范围是____________.
    22、(4分)方程的根是_____.
    23、(4分)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在直角坐标系中,正方形OABC的边长为8,连结OB,P为OB的中点.
    (1)直接写出点B的坐标B( , )
    (2)点D从B点出发,以每秒1个单位长度的速度在线段BC上向终点C运动,连结PD,作PD⊥PE,交OC于点E,连结DE.设点D的运动时间为秒.
    ①点D在运动过程中,∠PED的大小是否发生变化?如果变化,请说明理由如果不变,求出∠PED的度数
    ②连结PC,当PC将△PDE分成的两部分面积之比为1:2时,求的值.
    25、(10分)求证:取任何实数时,关于的方程总有实数根.
    26、(12分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
    (1)试判断四边形OCED的形状,并说明理由;
    (2)若AB=3,BC=4,求四边形OCED的周长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据化简即可.
    【详解】
    =.
    故选C.
    此题的关键是把写成的形式.
    2、B
    【解析】
    根据平行四边形的性质可知∠A=∠C,再结合题中∠A+∠C=130°即可求出∠A的度数.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴.
    又∵∠A+∠C=130°,
    ∴∠A =65°,
    故选:B.
    本题主要考查平行四边形的性质,掌握平行四边形的性质是解题的关键.
    3、D
    【解析】
    根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.
    【详解】
    解:这个四边形是矩形,理由如下:
    ∵对角线AC、BD交于点O,OA= OC, OB=OD,
    ∴四边形ABCD是平行四边形,
    又∵OA=OC=OD=OB,
    ∴AC=BD,
    ∴四边形ABCD是矩形.
    故选D.
    本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.
    4、D
    【解析】
    根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.
    【详解】
    将点A(2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B(−1,3),
    故选:D.
    本题考查坐标平移,记住坐标平移的规律是解决问题的关键.
    5、A
    【解析】
    根据等腰三角形的性质求出∠ABC=∠C=65°,根据线段的垂直平分线的性质得到AD=BD,得到答案.
    【详解】
    解:∵AB=AC,∠A=50°,
    ∴∠ABC=∠C=65°,
    ∵l垂直平分AB,
    ∴AD=BD,
    ∴∠ABD=∠A=50°,
    ∴∠CBD=∠ABC-∠ABD=65°-50°=15°.
    故选:A
    本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    6、D
    【解析】
    解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;
    D工作量小,没有破坏性,适合普查.
    故选D.
    7、D
    【解析】
    根据矩形性质进行判断:矩形的两条对角线相等,4个角是直角等.
    【详解】
    根据矩形性质, ,,只有D说法不正确的.
    故选D
    本题考核知识点:矩形性质. 解题关键点:熟记矩形性质.
    8、D
    【解析】
    根据反比例函数的图像与性质逐项分析即可.
    【详解】
    ∵k<0,
    ∴反比例函数的图像在二、四象限.
    A.当点在第二象限,点在第四象限,且时,x1+x2>0,y1+y2>0,此时,故A错误;
    B. 当点和点在第四象限时,x1+x2>0,y1+y2<0,此时,故B错误;
    C. 当点和点在第四象限时,x1·x2>0,x1-x2<0,y1-y2<0,此时,故C错误;
    D. ∵A、B、C均错误,
    ∴D正确.
    故选D.
    本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    平移的距离为线段BE的长求出BE即可解决问题;
    【详解】
    ∵BC=EF=5,EC=3,
    ∴BE=1,
    ∴平移距离是1,
    故答案为:1.
    本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
    10、13.
    【解析】
    利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案
    【详解】
    利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13
    本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线
    11、
    【解析】
    由三角形的中位线定理得:B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出结论.
    【详解】
    ∵△A1B1C1中,A1B1=4,A1C1=5,B1C1=1,
    ∴△A1B1C1的周长是16,
    ∵A2,B2,C2分别是边B1C1,A1C1,A1B1的中点,
    ∴B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,
    …,
    以此类推,则△A4B4C4的周长是×16=2;
    ∴△AnBn∁n的周长是,
    ∴第2019个三角形的周长是=,
    故答案为:.
    本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
    12、1.
    【解析】
    根据正方形的面积可用对角线进行计算解答即可.
    【详解】
    解:连接AC,BD交于点O,
    ∵B、E、F、D四点在同一条直线上,
    ∴E,F在BD上,
    ∵正方形AECF的面积为50cm2,
    ∴AC2=50,AC=10cm,
    ∵菱形ABCD的面积为120cm2,
    ∴=120,BD=24cm,
    所以菱形的边长AB==1cm.
    故答案为:1.
    此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
    13、x>1
    【解析】
    根据分式及二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
    【详解】
    ∵代数式在实数范围内有意义,
    ∴.
    故答案为:x>1.
    本题考查二次根式及分式有意义的条件,掌握二次根式及分式有意义的条件是解答此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.
    【解析】
    (1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;
    (2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;
    ②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;
    【详解】
    (1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,
    ∵四边形EFGH是正方形,
    ∴EF=EH,
    ∵在△BEH和△AEF中,
    ∴△BEH≌△AEF(SAS),
    ∴BH=AF;
    (2)①BH=AF,
    理由:连接EG,
    ∵四边形ABCD是正方形,
    ∴AE=BE,∠BEA=90°,
    ∵四边形EFGH是正方形,
    ∴EF=EH,∠HEF=90°,
    ∴∠BEA+∠AEH=∠HEF+∠AEH,
    即∠BEH=∠AEF,
    在△BEH与△AEF中,,
    ∴△BEH≌△AEF,
    ∴BH=AF;
    ②如备用图,∵四边形ABDH是平行四边形,
    ∴AH∥BD,AH=BD,
    ∴∠EAH=∠AEB=90°,
    ∵四方形ABCD的边长为,
    ∴AE=BE=CE=DE=1,
    ∴EH===,
    ∴正方形EFGH的边长为.
    本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.
    15、(1), ;(2)或
    【解析】
    (1)先变形为4x(2x-1)+2x-1=0,然后利用因式分解法解方程;
    (2) 先把方程化为一般式,然后利用求根公式法解方程;
    【详解】
    解:(1)4x(2x-1)+2x-1=0,
    (2x-1)(4x+1)=0,
    2x-1=0或4x+1=0,
    所以,;
    (2).
    3x2-5x-2=0,
    △=(-5)2-4×3×(-2)=49,
    所以或;
    本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
    16、(1)见解析;(2)60人;(3).
    【解析】
    (1)第5小组的频率应该是1-0.05-0.1-0.30-0.35=0.1,所以在直方图上画上第五组即可.
    (2)第5组的人数为9人,频率为0.1,总人数=频数÷频率,从而可得解.
    (3)合格的频率加起来即可.
    【详解】
    (1)1-0.05-0.1-0.30-0.35=0.1.
    补图如下:
    (2)=60(人).
    该班参加这次测试的学生有60人.
    (3)0.30+0.35+0.1=0.8=80%.
    该班成绩的合格率是80%.
    本题考查画直方图,以及熟记频率,频数的概念以及它们之间的关系,从而可得解.
    17、(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.
    【解析】
    (1)根据勾股定理的逆定理解答即可;
    (2)根据勾股定理解答即可
    【详解】
    (1)是,
    理由是:在△CHB中,
    ∵CH2+BH2=(2.4)2+(1.8)2=9
    BC2=9
    ∴CH2+BH2=BC2
    ∴CH⊥AB,
    所以CH是从村庄C到河边的最近路
    (2)设AC=x
    在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4
    由勾股定理得:AC2=AH2+CH2
    ∴x2=(x﹣1.8)2+(2.4)2
    解这个方程,得x=2.5,
    答:原来的路线AC的长为2.5千米.
    此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.
    18、(1)(-1,3);(2);(3) (-,0).
    【解析】
    (1)把A、B的坐标代入函数解析式,求出函数解析式,即可求出D点的坐标;
    (2)根据面积公式求出面积即可;
    (3)找出P点的位置,求出直线EC的解析式,即可求出PD点的坐标.
    【详解】
    解:(1)把A(-3,0)代入y=x+m,得m=,
    ∵直线y=-x+2与x轴、y轴分别交于B、C两点,
    ∴B点坐标为(2,0),C(0,2),
    解方程组得:,
    ∴D点坐标为(-1,3);
    故答案为(-1,3);
    (2)∵直线y=-x+2与x轴、y轴分别交于B、C两点,
    ∴B点坐标为(2,0),C(0,2),
    ∴四边形AOCD的面积=S△DAB-S△COB
    =×5×3-×2×2
    =;
    (3)作D关于x轴的对称点E,连接CE,交x轴于P,此时PD+PC的值最小,
    ∵D点坐标为(-1,3),
    ∴E点的坐标为(-1,-3),
    设直线CE的解析式为y=ax+b,
    把E、C的坐标代入得:
    解得:a=5,b=2,
    即直线CE的解析式为y=5x+2,
    当y=0时,x=-,
    即P点的坐标为(-,0).
    本题考查了函数图象上点的坐标特征,轴对称-最短路线问题等知识点,能综合运用知识点进行计算是解此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、8 .
    【解析】
    观察图形我们可以得出x和y的关系式为:是x≥1时关系式为y=x+5,当x<1是y=−x+5,然后将x=-2代入y=−x+5,求出y值即a值,再把a值代入关系式即可求出结果.
    【详解】
    当x=-2时,
    ∵x=−2<1,
    ∴y=a=−x+5=6;
    当x=6时,.
    ∵x=6≥1,
    ∴y=x+5=8.
    故答案为:8.
    本题考查了代数式求值,掌握该求值方法是解答本题的关键.
    20、40°
    【解析】
    直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
    【详解】
    解:,,

    对角线与相交于点,是边的中点,
    是的中位线,


    故答案为:.
    此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出是的中位线是解题关键.
    21、
    【解析】
    由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.
    【详解】
    ∵直线y=2x与线段AB有公共点,
    ∴2n≥3,
    ∴.
    故答案为:.
    本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.
    22、,.
    【解析】
    方程变形得:x1+1x=0,即x(x+1)=0,
    可得x=0或x+1=0,
    解得:x1=0,x1=﹣1.
    故答案是:x1=0,x1=﹣1.
    23、1.
    【解析】
    作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.
    【详解】
    解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,∠QBP=∠MBP,
    即Q在AB上,
    ∵MQ⊥BD,
    ∴AC∥MQ,
    ∵M为BC中点,
    ∴Q为AB中点,
    ∵N为CD中点,四边形ABCD是菱形,
    ∴BQ∥CD,BQ=CN,
    ∴四边形BQNC是平行四边形,
    ∴NQ=BC,
    ∵四边形ABCD是菱形,
    ∴CP=AC=3,BP=BD=4,
    在Rt△BPC中,由勾股定理得:BC=1,
    即NQ=1,
    ∴MP+NP=QP+NP=QN=1,
    故答案为1
    本题考查轴对称-最短路线问题;菱形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)8,8;(2)①∠PED的大小不变,∠PED=45°;②t的值为:秒或秒.
    【解析】
    (1)根据正方形的边长为8和正方形的性质写出点B的坐标;
    (2)①如图1,作辅助线,证明四边形PMCN是正方形,再证明△DPN≌△EPM(ASA),可得△DPE是等腰直角三角形,可得结论;
    ②分两种情况:当PC将△PDE分成的两部分面积之比为1:2时,即G是ED的三等分点,根据面积法可知:EC与CD的比为1:2或2:1,列方程可得结论.
    【详解】
    解:(1)∵正方形OABC的边长为8,
    ∴B(8,8);
    故答案为:8,8;
    (2)①∠PED的大小不变;理由如下:
    作PM⊥OC于M,PN⊥CB于N,如图1所示:
    ∵四边形OABC是正方形,
    ∴OC⊥BC,
    ∴∠MCN=∠PMC=∠PNC=90°,
    ∴四边形PMCN是矩形,
    ∵P是OB的中点,
    ∴N、M分别是BC和OC的中点,
    ∴MC=NC,
    ∴矩形PMCN是正方形,
    ∴PM=PN,∠MPN=90°,
    ∵∠DPE=90°,
    ∴∠DPN=∠EPM,
    ∵∠PND=∠PME=90°,
    ∴△DPN≌△EPM(ASA),
    ∴PD=PE,
    ∴△DPE是等腰直角三角形,
    ∴∠PED=45°;
    ②如图2,作PM⊥OC于M,PN⊥CB于N,
    若PC将△PDE的面积分成1:2的两部分,
    设PC交DE于点G,则点G为DE的三等分点;
    当点D到达中点之前时,如图2所示,CD=8-t,
    由△DPN≌△EPM得:ME=DN=4-t,
    ∴EC=CM-ME=4-(4-t)=t,
    ∵点G为EF的三等分点,
    ∴或
    ∵CP平分∠OCB,
    ∴或2,
    即CD=2CE或CE=2CD,
    ∴8-t=2t或t=2(8-t),
    t=或(舍);
    当点D越过中点N之后,如图3所示,CD=8-t,
    由△DPN≌△EPM得:CD=8-t,DN=t-4
    ∴EC=CM+ME=4+(t-4)=t,
    ∵点G为EF的三等分点,
    ∴或
    ∵CP平分∠OCB,
    ∴或2,
    即CD=2CE或CE=2CD,
    ∴8-t=2t或t=2(8-t),
    t=(舍)或;
    综上所述,当PC将△PED分成的两部分的面积之比为1:2时,t的值为:秒或秒.
    本题是四边形综合题目,考查了正方形的性质、坐标与图形性质、三角形中位线定理、全等三角形的判定与性质、面积法等知识;本题综合性强,难度适中.
    25、见解析
    【解析】
    由a是二次项的系数,分a=0及两种情况分别确定方程的根的情况即可得到结论.
    【详解】
    当时,方程为,;
    当,方程为一元二次方程,
    ,原方程有实数根.
    综上所述,取任何值时,原方程都有实数根.
    此题考查方程的根的情况,正确理解题意分情况解答是解题的关键.
    26、(1)菱形(2)1
    【解析】
    (1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形;(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.
    【详解】
    (1)四边形OCED是菱形.
    ∵DE∥AC,CE∥BD,
    ∴四边形OCED是平行四边形,
    在矩形ABCD中,OC=OD,
    ∴四边形OCED是菱形.
    (2)∵四边形ABCD是矩形,
    ∴AC===5,
    ∴CO=OD=,
    ∴四边形OCED的周长=4×=1.
    此题考查了菱形的判定与性质以及矩形的性质.根据连线的判定定理证得四边形CODE是菱形是解此题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    江苏省扬州市江都区第二中学2024年九年级数学第一学期开学统考试题【含答案】: 这是一份江苏省扬州市江都区第二中学2024年九年级数学第一学期开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省扬州市邗江区梅岭中学2024年数学九年级第一学期开学考试模拟试题【含答案】: 这是一份江苏省扬州市邗江区梅岭中学2024年数学九年级第一学期开学考试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省扬州市广陵区梅岭中学2025届九上数学开学学业质量监测模拟试题【含答案】: 这是一份江苏省扬州市广陵区梅岭中学2025届九上数学开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map