江苏泰州地区2024年数学九年级第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4, 5, 6B.5, 12, 13C.2, 3, 4D.1, ,3
2、(4分)如图,在▱ABCD中,BM是∠ABC的角平分线且交CD于点M,MC=2,▱ABCD的周长是16,则DM等于( )
A.1B.2C.3D.4
3、(4分)下列二次根式中,为最简二次根式的是( )
A.B.C.D.
4、(4分)的倒数是( )
A.B.C.D.
5、(4分)如图,在RtABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠EDC的度数是( )
A.25°B.30°C.50°D.65°
6、(4分),图象上有两点,且,,,当时,的取值范围是( )
A.B.C.D.
7、(4分)如图所示,购买一种苹果,所付款金额(单元:元)与购买量(单位:千克)之间的函数图像由线段和射线组成,则一次购买千克这种苹果,比分五次购买,每次购买千克这种苹果可节省( )
A.元B.元C.元D.元
8、(4分)如图,若要使▱ABCD成为矩形,需添加的条件是( )
A.AB=BCB.∠ABD=∠DBCC.AO=BOD.AC⊥BD
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知是实数,且和都是整数,那么的值是________.
10、(4分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是_____.
11、(4分)计算:(-2019)0×5-2=________.
12、(4分)已知反比例函数,若,且,则的取值范围是_____.
13、(4分)已知一组数据为1,10,6,4,7,4,则这组数据的中位数为________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
根据以上统计图,解答下列问题:
(1)求出本次接受调查的市民共有多少人?
(2)扇形统计图中,扇形E的圆心角度数是_________;
(3)请补全条形统计图;
(4)若该市约有80万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
15、(8分)解不等式组:.
16、(8分)如图,已知A(-4,0)、B(0,2)、C(6,0),直线AB与直线CD相交于点D,D点的横纵坐标相同;
(1)求点D的坐标;
(2)点P从O出发,以每秒1个单位的速度沿x轴正半轴匀速运动,过点P作x轴的垂线分别与直线AB、CD交于E、F两点,设点P的运动时间为t秒,线段EF的长为y(y>0),求y与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,直线CD上是否存在点Q,使得△BPQ是以P为直角顶点的等腰直角三角形?若存在,请求出符合条件的Q点坐标,若不存在,请说明理由.
17、(10分)已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.
(1)利用图①证明:EF=2BC.
(2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.
18、(10分)解方程:
(1);(2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把(a-2)根号外的因式移到根号内,其结果为____.
20、(4分)已知一组数据3、x、4、5、6,若该组数据的众数是5,则x的值是_____.
21、(4分)如图,是的斜边上的中线,,在上找一点,使得,连结并延长至,使得,连结,,则长为________.
22、(4分)将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.
23、(4分)把直线向上平移2个单位得到的直线解析式为:_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
25、(10分)解不等式组
26、(12分)某区举行“庆祝改革开放40周年”征文比赛,已知每篇参赛征文成绩记分,组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表:
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中的值是 ;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.
【详解】
解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;
C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.
故选:B.
本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
2、D
【解析】
根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是16,求出CD=6,得到DM的长.
【详解】
解:∵BM是∠ABC的平分线,
∴∠ABM=∠CBM,
∵AB∥CD,
∴∠ABM=∠BMC,
∴∠BMC=∠CBM,
∴BC=MC=2,
∵▱ABCD的周长是16,
∴BC+CD=8,
∴CD=6,
则DM=CD﹣MC=4,
故选:D.
本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.
3、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
4、B
【解析】
直接利用倒数的定义进而得出答案.
【详解】
∵×()=1,
∴的倒数.
故选B.
此题主要考查了倒数,正确把握倒数的定义是解题关键.
5、D
【解析】
根据三角形内角和定理求出∠B,根据直角三角形的性质得到ED=EB,得到∠EDB=∠B,进而得出∠EDC的度数.
【详解】
解:∵∠ACB=90°,∠A=65°,
∴∠B=25°,
∵CD⊥AB,E是BC的中点,
∴ED=BC=EB, ∠ADB=90°,
∴∠EDB=∠B=25°,
∴∠EDC=90°﹣25°=65°,
故选:D.
本题考查的是直角三角形的性质、三角形内角和定理,在直角三角形中,斜边上的中线等于斜边的一半.
6、D
【解析】
根据一次函数的性质,k<0时,y随x的增大而减小来判断即可.
【详解】
解:当k<0时,y随x的增大而减小,
若x1<x2,得y1>y2,∴<0;
若x1>x2,得y1<y2,∴<0;
又,∴y1≠y2,∴≠0.
∴t<0.
故选:D.
本题主要考查一次函数的性质,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
7、B
【解析】
可由函数图像计算出2千克以内每千克的价钱,超出2千克后每千克的价钱,再分别计算出一次购买千克和分五次购买各自所付款金额.
【详解】
解:由图像可得2千克以内每千克的价钱为:(元),超出2千克后每千克的价钱为:(元),一次购买千克所付款金额为:(元),分五次购买所付款金额为:(元),可节省(元).
本题考查了函数的图像,正确从函数图像获取信息是解题的关键.
8、C
【解析】
根据矩形的判定定理①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形,逐一判断即可.
【详解】
解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;
B、∵四边形ABCD是平行四边形,∠ABD=∠DBC,得出四边形ABCD是菱形,不是矩形;故本选项错误;
C、∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AO=BO,
∴OA=OC=OB=OD,
即AC=BD,
∴平行四边形ABCD是矩形,故本选项正确;
D、∵四边形ABCD是平行四边形,AC⊥BD,
∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
故选:C.
本题考查的是平行四边形ABCD成为矩形的条件,熟练掌握这些条件是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.
【详解】
由题意设m+=a(a为整数),=b(b为整数),
∴m=a-,
∴=b,
整理得:
,
∴b2-8=1,8a-ab2=-b,
解得:b=±3,a=±3,
∴m=±3-.
故答案为±3-.
本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..
10、18
【解析】
分析:利用菱形的性质结合勾股定理得出AB的长,进而得出答案.
详解:∵在菱形ABCD中,AC=8,BD=6,
∴AB=BC,∠AOB=90°,AO=4,BO=3,
∴BC=AB=,
∴△ABC的周长=AB+BC+AC=5+5+8=18.
故答案为18
点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
11、
【解析】
根据零指数幂的性质及负整数指数幂的性质即可解答.
【详解】
原式=1×.
故答案为:.
本题考查了零指数幂的性质及负整数指数幂的性质,熟练运用零指数幂的性质及负整数指数幂的性质是解决问题的关键.
12、或
【解析】
利用反比例函数增减性分析得出答案.
【详解】
解:且,
时,,
在第三象限内,随的增大而减小,
;
当时,,在第一象限内,随的增大而减小,
则,
故的取值范围是:或.
故答案为:或.
此题主要考查了反比例函数图象上点的坐标特征,正确掌握反比例函数增减性是解题关键.
13、5.
【解析】
将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:将这组数据按从小到大的顺序排列是:1,4,4,6,7,10,位于最中是的两个数是4和6,因此中位数为(4+6)÷2=5.
故答案为5.
本题考查了中位数的含义及计算方法.
三、解答题(本大题共5个小题,共48分)
14、(1)2000(2)(3)500(4)32万
【解析】
(1)由A组人数及其所占百分比可得总人数;
(2)用360°乘以对应比例即可得;
(3)用总人数乘以D所占百分比即可;
(4)利用样本估计总体思想求解可得.
【详解】
(1)本次接受调查的市民共有:(人);
(2)扇形E角的度数为:
(3)D选项的人数为:
补全条形统计图
(4)估计赞同“选育无絮杨品种,并推广种植”的人数为 (万人)
故估计赞同“选育无絮杨品种,并推广种植”的人数为32万人
本题考查了扇形统计图、条形统计图,观察统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小,条形统计图直接反映部分的具体数据.
15、2<x≤1
【解析】
分别计算出各不等式的解集,再求出其公共解集即可.
【详解】
解:解①得:x>2
解②得:x≤1
不等式组的解集是2<x≤1.
本题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
16、(1)D(4,4);(2)y,t的取值范围为:0≤t<4或t>4;(3)存在,其坐标为(,)或(14,-16),见解析.
【解析】
(1)根据条件可求得直线AB的解析式,可设D为(a,a),代入可求得D点坐标;
(2)分0≤t<4、4<t≤6和t>6三种情况分别讨论,利用平行线分线段成比例用t表示出PE、PF,可得到y与t的函数关系式;
(3)分0<t<4和t>4,两种情况,过Q作x轴的垂线,证明三角形全等,用t表示出Q点的坐标,代入直线CD,可求得t的值,可得出Q点的坐标.
【详解】
解:(1)设直线AB的解析式为y=kx+b,
将A(-4,0)、B(0,2)两点代入,
解得,k= ,b=2,
∴直线AB解析式为y=x+2,
∵D点横纵坐标相同,设D(a,a),
∴a=a+2,
∴D(4,4);
(2)设直线CD解析式为y=mx+n,
把C、D两点坐标代入,解得m=-2,n=12,
∴直线CD的解析式为y=-2x+12,
∴AB⊥CD,
当 0≤t<4时,如图1,
设直线CD于y轴交于点G,则OG=12,OA=4,OC=6,OB=2,OP=t,
∴PC=6-t,AP=4+t,
∵PF∥OG,
,
,
,
,
当4<t≤6时,如图2,
同理可求得PE=2+ ,PF=12-2t,
此时y=PE-PF= t+2−(−2t+12)=t−10,
当t>6时,如图3,
同理可求得PE=2+,PF=2t-12,
此时y=PE+PF=t-10;
综上可知y,t的取值范围为:0≤t<4或t>4;
(3)存在.
当0<t<4时,过点Q作QM⊥x轴于点M,如图4,
∵∠BPQ=90°,
∴∠BPO+∠QPM=∠OBP+∠BPO=90°,
∴∠OPB=∠QPM,
在△BOP和△PMQ中,
∴△BOP≌△PMQ(AAS),
∴BO=PM=2,OP=QM=t,
∴Q(2+t,t),
又Q在直线CD上,
∴t=-2(t+2)+12,
∴t= ,
∴Q(,);
当t>4时,过点Q作QN⊥x轴于点N,如图5,
同理可证明△BOP≌△PNQ,
∴BO=PN=2,OP=QN=t,
∴Q(t-2,-t),
又∵Q在直线CD上,
∴-t=-2(t-2)+12,
∴t=16,
∴Q(14,-16),
综上可知,存在符合条件的Q点,其坐标为(,)或(14,-16).
本题主要考查待定系数法求函数解析式和平行线分线段成比例、等腰直角三角形的性质、全等三角形的判定和性质等知识点的综合应用.求得点的坐标是利用待定系数法的关键,在(2)中利用t表示出相应线段,化动为静是解题的关键,在(3)中构造三角形全等是解题的关键.本题难度较大,知识点较多,注意分类讨论思想的应用.
17、(1)详见解析;(2)成立,证明见解析.
【解析】
(1)根据等边三角形的性质,得∠ACB=60°,AC=BC.结合三角形外角的性质,得∠CAF=30°,则CF=AC,从而证明结论;
(2)根据(1)中的证明方法,得到CH=CF.根据(1)中的结论,知BE+CF=AC,从而证明结论.
【详解】
(1)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
∵∠F=30°,∴∠CAF=60°-30°=30°,∴∠CAF=∠F,∴CF=AC,∴CF=AC=BC,∴EF=2BC.
(2)成立.证明如下:
∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
∵∠F=30°,∴∠CHF=60°-30°=30°,∴∠CHF=∠F,∴CH=CF.
∵EF=2BC,∴BE+CF=BC.
又∵AH+CH=AC,AC=BC,∴AH=BE.
本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF=2BC是解题的关键.
18、(2)原方程无解;(2)x= 2
【解析】
根据去分母,去括号转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(2)解:方程两边同乘(x-2),得3x+2=2.解这个方程,得x=2.
经检验:x=2是增根,舍去,所以原方程无解。
(2)解:方程两边同乘(x2),得2x=x22.
解这个方程,得x= 2.
经检验:x= 2是原方程的解.
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要注意验根.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-
【解析】
根据二次根式有意义的条件,可知2-a>0,解得a<2,即a-2<0,因此可知(a-2)根号外的因式移到根号内后可得(a-2)=.
故答案为-.
20、1
【解析】
根据众数的定义进行求解即可得答案.
【详解】
解:这组数据中的众数是1,即出现次数最多的数据为:1,
故x=1,
故答案为1.
本题考查了众数的知识,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.
21、1
【解析】
根据直角三角形的性质求出DE,根据三角形中位线定理计算即可.
【详解】
解:∵DE是Rt△ABD的斜边AB上的中线,AB=12,
∴DE=AB=6,
∴EF=DE-DF=6-2=4,
∵AF=CF,AE=EB,
∴EF是三角形ABC的中位线,
∴BC=2EF=1,
故答案为:1.
本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
22、上 1
【解析】
根据“上加下减”的平移规律解答即可.
【详解】
解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,
即y=3x,该函数图象经过原点.
故答案为上,1.
此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.
23、
【解析】
直接根据一次函数图象与几何变换的有关结论求解.
【详解】
直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.
故答案为y=2x+2.
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
二、解答题(本大题共3个小题,共30分)
24、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.
【解析】
(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.
【详解】
解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象
则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s
(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,
∴他离家的路程y=4000﹣300x,
自变量x的范围为0≤x≤,
(3)由图象可知,两人相遇是在小玲改变速度之前,
∴4000﹣300x=200x
解得x=8
∴两人相遇时间为第8分钟.
故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.
本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.
25、1≤x<6.1
【解析】
分别解两个不等式,最后求公共部分即可.
【详解】
解:,
解不等式①得:x≥1,
解不等式②得:x<6.1,
所以不等式组的解集为:1≤x<6.1.
本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
26、(1)0.2;(2)见解析;(3)300篇.
【解析】
(1)依据,即可得到的值;
(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;
(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.
【详解】
解:(1),
故答案为:0.2;
(2),
,,
补全征文比赛成绩频数分布直方图:
(3)全市获得一等奖征文的篇数为:(篇.
本题考查了频数(率分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
征文比赛成绩频数分布表
分数段
频数
频率
38
0.38
0.32
10
0.1
合计
1
江苏省无锡市2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份江苏省无锡市2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省泰州医药高新区六校联考2024年九上数学开学学业质量监测试题【含答案】: 这是一份江苏省泰州医药高新区六校联考2024年九上数学开学学业质量监测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省泰州市部分地区2024年数学九年级第一学期开学监测试题【含答案】: 这是一份江苏省泰州市部分地区2024年数学九年级第一学期开学监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。