江西省赣州蓉江新区潭东中学2025届数学九年级第一学期开学联考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,直角坐标系中有两点A(5,0),B(0,4),A,B两点间的距离为( )
A.3B.7C.D.9
2、(4分)如图,不等式组的解集在数轴上表示正确的是( )
A.B.
C.D.
3、(4分)如图是小王早晨出门散步时,离家的距离s与时间t之间的函数图象.若用黑点表示小王家的位置,则小王散步行走的路线可能是( )
A.B.C.D.
4、(4分)不等式组的解集在数轴上表示正确的是( )
A.B.
C.D.
5、(4分) 如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
A.18B.9
C.6D.条件不够,不能确定
6、(4分)如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,2)B.(4,1)C.(3,1)D.(4,2)
7、(4分)一个直角三角形斜边上的中线为5,斜边上的高为4,则此三角形的面积为( )
A.25B.16C.20D.10
8、(4分)若函数的解析式为y=,则当x=2时对应的函数值是( )
A.4B.3C.2D.0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.
10、(4分)如图,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,CD=6cm,则AB的长为 cm.
11、(4分)已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解_____.
12、(4分)如下图,将边长为 9cm 的正方形纸片 ABCD 折叠,使得点 A 落在边 CD 上的 E 点,折痕为 MN.若 CE 的长为 6cm,则 MN 的长为_____cm.
13、(4分)已知在△ABC中,∠ABC和∠ACB的角平分线交于O,且∠ABC的角平分线与∠ACB的外角平分线交于P,∠OPC和∠OCP角平分线交于H,∠H=117.5°,则∠A=________
三、解答题(本大题共5个小题,共48分)
14、(12分)为了准备“欢乐颂——创意市场”,初2020级某同学到批发市场购买了、两种原材料,的单价为每件6元,的单价为每件3元.该同学的创意作品需要材料的数量是材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.
(1)该同学最多购买多少件材料;
(2)在该同学购买材料最多的前提下,用所购买的,两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高标价,但无人问津,于是该同学在标价的基础上降低出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了,求的值.
15、(8分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.
(1)求∠ADC的度数;
(2)求四边形ABCD的面积.
16、(8分)如图,将一矩形纸片OABC放在平面直角坐标系中,O(1,1),A(6,1),C(1,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)
(1)OE= ,OF= (用含t的代数式表示)
(2)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处
①求点D的坐标及直线DE的解析式;
②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=1.求S与b之间的函数关系式,并求出自变量b的取值范围.
17、(10分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
(3)结合图像写出不等式的解集;
18、(10分)已知△ABC中, ∠ACB=90°,∠CAB=30°,以AC,AB为边向外作等边三角形ACD和等边三角形ABE,点F在AB上,且到AE,BE的距离相等.
(1)用尺规作出点F; (要求:尺规作图,保留作图痕迹,不写作法)
(2)连接EF,DF,证明四边形ADFE为平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在函数y=中,自变量x的取值范围是____.
20、(4分)二次根式在实数范围内有意义,x的取值范围是_____.
21、(4分)若代数式的值比的值大3,则的值为______.
22、(4分)关于的一元二次方程有两个不相等的实数根,则的取值范围是_______.
23、(4分)在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:
则这10个小组植树株数的方差是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,
(1)在确定调查方式时,团委设计了以下三种方案:
方案一:调查七年级部分女生;
方案二:调查七年级部分男生;
方案三:到七年级每个班去随机调查一定数量的学生
请问其中最具有代表性的一个方案是 ;
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;
(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.
25、(10分)如图,AD是△ABC的边BC上的高,∠B=60°,∠C=45°,AC=6.求:
(1)AD的长;
(2)△ABC的面积.
26、(12分)(1)分解因式: x(a-b)+y(a-b)
(2)解分式方程:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理求解即可.
【详解】
∵A(5,0),B(0,4),
∴OA=5,OB=4,
∴AB===,
故选:C.
本题考查了勾股定理,掌握知识点是解题关键.
2、B
【解析】
首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
【详解】
解:解第一个不等式得:x>-1;
解第二个不等式得:x≤1,
在数轴上表示,
故选B.
此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
3、D
【解析】
分析图象,可知该图象是路程与时间的关系,先离家逐渐变远,然后距离不变,在逐渐变近,据此进行判断即可得.
【详解】
通过分析图象和题意可知,行走规律是:离家逐渐远去,离家距离不变,离家距离逐渐近,所以小王散步行走的路线可能是
故选D.
本题考查了函数的图象,根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论是解题的关键.
4、B
【解析】
根据大于小的小于大的取中间确定不等式组的解集,最后用数轴表示解集.
【详解】
所以这个不等式的解集是-3≤x<1,
用数轴表示为
故选B
此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.
5、C
【解析】
因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.
【详解】
延长EP交AB于点G,延长DP交AC与点H.
∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.
又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB1.
故选C.
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
6、A
【解析】
试题分析:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选A.
考点:1.位似变换;2.坐标与图形性质.
7、C
【解析】
根据直角三角形的性质可得出斜边的长,进而根据三角形的面积公式求出此三角形的面积.
【详解】
解:根据直角三角形斜边上的中线等于斜边的一半知:此三角形的斜边长为5×2=10;
所以此三角形的面积为:×10×4=1.
故选:C.
本题考查直角三角形的性质以及三角形的面积计算方法.掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
8、A
【解析】
把x=2代入函数解析式y=,即可求出答案.
【详解】
把x=2代入函数解析式y=得,
故选A.
本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.
【详解】
解:∵四边形ABCD为平行四边形,
∴AO=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF,
∴OF=OE=1.5,CF=AE,
根据平行四边形的对边相等,得
CD=AB=4,AD=BC=5,
故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
故答案为:1.
本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.
10、1.
【解析】
试题分析:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴线段CD是斜边AB上的中线;
又∵CD=6cm,
∴AB=2CD=1cm.
故答案是:1.
考点:直角三角形斜边上的中线.
11、.
【解析】
根据方程组的解即为函数图象的交点坐标解答即可.
解:∵一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),
∴方程组的解为.
故答案为为.
12、3
【解析】
根据图形折叠前后图形不发生大小变化得出∠MWE=∠AWM=90°,进而得出∠DAE=∠DAE,再证明△NFM≌△ADE,然后利用勾股定理的知识求出MN的长.
【详解】
解:作NF⊥AD,垂足为F,连接AE,NE,
∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,
∴∠D=∠AHM=90°,∠DAE=∠DAE,
∴△AHM∽△ADE,
∴∠AMN=∠AED,
在△NFM和△ADE中
∵,
∴△NFM≌△ADE(AAS),
∴FM=DE=CD-CE=3cm,
又∵在Rt△MNF中,FN=9cm,
∴根据勾股定理得:MN==3(cm).
故答案为3.
本题考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.
13、70°
【解析】
根据三角形内角和定理,可得∠HCP+∠HPC=62.5°,由角平分线的性质,得∠OCP+∠OPC=125°,由三角形外角性质,得到∠BOC的度数,然后∠OBC+OCB=55°,然后可以计算得到∠A的度数.
【详解】
解:∵∠H=117.5°,
∴∠HCP+∠HPC=180°-117.5°=62.5°,
∵CH平分∠OCP,PH平分∠OPC,
∴∠OCP+∠OPC=2(∠HCP+∠HPC)= 125°,
∴∠BOC=125°,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
本题考查了角平分线的性质,三角形的内角和定理,三角形的外角性质,解题的关键是灵活运用性质求出有关的角度.
三、解答题(本大题共5个小题,共48分)
14、(1)80件B种原材料;(2)1.
【解析】
(1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;
(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.
【详解】
(1)设该同学购买x件B种原材料,则购买x件A种原材料,
根据题意得:6×x+3×x≤480,
解得:x≤80,
∴x最大值为80,
答:该同学最多可购买80件B种原材料.
(2)设y=a%,
根据题意得:(520+480)×(1+2y)(1-y)=(520+480)×(1+y),
整理得:4y2-y=0,
解得:y=0.1或y=0(舍去),
∴a%=0.1,a=1.
答:a的值为1.
此题考查一元二次方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,列出不等式或方程.
15、 (1) 150°;(2)
【解析】
(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;
(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.
【详解】
(1)连接BD,
∵AB=AD,∠A=60°,
∴△ABD是等边三角形,
∴∠ADB=60°,
DB=4,
∵42+12=(4)2,
∴DB2+CD2=BC2,
∴∠BDC=90°,
∴∠ADC=60°+90°=150°;
(2)过B作BE⊥AD,
∵∠A=60°,AB=4,
∴BE=AB•sin60°=4×=2,
∴四边形ABCD的面积为:AD•EB+DB•CD=×4×2+×4×1=4+2.
16、(1)6-t,+t;(2)①直线DE的解析式为:y=-;②
【解析】
(1)由O(1,1),A(6,1),C(1,3),可得:OA=6,OC=3,根据矩形的对边平行且相等,可得:AB=OC=3,BC=OA=6,进而可得点B的坐标为:(6,3),然后根据E点与F点的运动速度与运动时间即可用含t的代数式表示OE,OF;
(2)①由翻折的性质可知:△OPF≌△DPF,进而可得:DF=OF,然后由t=1时,DF=OF=,CF=OC-OF=,然后利用勾股定理可求CD的值,进而可求点D和E的坐标;利用待定系数可得直线DE的解析式;
②先确定出k的值,再分情况计算S的表达式,并确认b的取值.
【详解】
(1)∵O(1,1),A(6,1),C(1,3),
∴OA=6,OC=3,
∵四边形OABC是矩形,
∴AB=OC=3,BC=OA=6,
∴B(6,3),
∵动点F从O点以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相等的速度沿AO向终点O运动,
∴当点E的运动时间为t(秒)时,
AE=t,OF=+t,
则OE=OA-AE=6-t,
故答案为:6-t,+t;
(2)①当t=1时,OF=1+=,OE=6-1=5,则CF=OC-OF=3-=,
由折叠可知:△OEF≌△DEF,
∴OF=DF=,
由勾股定理,得:CD=1,
∴D(1,3);
∵E(5,1),
∴设直线DE的解析式为:y=mx+n(k≠1),
把D(1,3)和E(5,1)代入得:,解得:,
∴直线DE的解析式为:y=-;
②∵MN∥DE,
∴MN的解析式为:y=-,
当y=3时,-=3,x=(b-3)=b-4,
∴CM=b-4,
分三种情况:
i)当M在边CB上时,如图2,
∴BM=6-CM=6-(b-4)=11-b,
DM=CM-1=b-5,
∵1≤DM<5,即1≤b-5<5,
∴≤b<,
∴S=BM•AB=×3(11−b)=15-2b=-2b+15(≤b<);
ii)当M与点B重合时,b=,S=1;
iii)当M在DB的延长线上时,如图3,
∴BM=CM-6=b-11,
DM=CM-1=b-5,
∵DM>5,即b-5>5,
∴b>,
∴S=BM•AB=×3(b−11)=2b-15(b>);
综上,.
本题是四边形和一次函数的综合题,考查了动点的问题、矩形的性质、全等三角形的判定与性质等知识,解(1)的关键是:明确动点的时间和速度;解(2)的关键是:由翻折的性质可知:△OEF≌△DEF,并采用了分类讨论的思想,注意确认b的取值范围.
17、(1)y=,y=-x+1;(3)点E的坐标为(0,5)或(0,4);(3)0<x<3或x>13
【解析】
(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;
(3)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,1),得出PE=|m﹣1|,根据S△AEB=S△BEP﹣S△AEP=3,求出m的值,从而得出点E的坐标.
(3)根据函数图象比较函数值的大小.
【详解】
解:(1)把点A(3,6)代入y=,得m=13,则y=.
得,解得把点B(n,1)代入y=,得n=13,则点B的坐标为(13,1).
由直线y=kx+b过点A(3,6),点B(13,1),
则所求一次函数的表达式为y=﹣x+1.
(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,1).∴PE=|m﹣1|.
∵S△AEB=S△BEP﹣S△AEP=3,∴×|m﹣1|×(13﹣3)=3.
∴|m﹣1|=3.∴m1=5,m3=4.∴点E的坐标为(0,5)或(0,4).
(3)根据函数图象可得的解集:或;
考核知识点:反比例函数和一次函数的综合运用.熟记函数性质是关键.
18、(1)详见解析;(2)详见解析
【解析】
(1)由“点F在AB上,且到AE,BE的距离相等”可知作∠AEB的角平分线与AB的交点即为点F;
(2)先证明△ACB≌△AFE,再由全等三角形的性质得出AD∥EF,AD =EF,即可判定四边形ADFE为平行四边形.
【详解】
解:(1)如图,作∠AEB的角平分线,交AB于F点
∴F为所求作的点
(2)如图,连接EF,DF,
∵△ABE和△ACD都是等边三角形,∠ACB=90°,∠CAB=30°,EF平分∠AEB,
∴∠DAE=150°,∠AEF=30°,
∴△ACB≌△AFE
∴∠DAE+∠AEF=180°,EF=AC
∴AD∥EF,AD=AC=EF
∴四边形ADFE为平行四边形
本题考查了角平分线的尺规作图、全等三角形的判定及性质、平行四边形的判定,解题的关键张熟练掌握上述知识点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥-2且x≠1
【解析】
根据二次根式被开方数大于等于1,分式分母不等于1列式计算即可得解.
【详解】
解:由题意得,x+2≥1且2x≠1,
解得:x≥-2且x≠1.
故答案为:x≥-2且x≠1.
本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为1;(3)当函数表达式是二次根式时,被开方数非负.
20、x≤1
【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,1﹣x≥0,
解得,x≤1,
故答案为x≤1.
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
21、1或2;
【解析】
根据题意列出方程,求出方程的解即可得到x的值.
【详解】
解:根据题意得:x2+4x-1-3x2+2x=3,即x2-3x+2=0,
分解因式得:(x-1)(x-2)=0,
解得:x1=1,x2=2,
故答案为:1或2.
本题考查解一元二次方程-因式分解法,熟练掌握各种解法是解本题的关键.
22、q<1
【解析】
解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<1.故答案为q<1.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
23、0.1.
【解析】
求出平均数,再利用方差计算公式求出即可:
根据表格得,平均数=(5×3+1×4+7×3)÷10=1.
∴方差=.
【详解】
请在此输入详解!
二、解答题(本大题共3个小题,共30分)
24、 (1) 方案三;(2)见解析;(3) 150名.
【解析】
分析:(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)因为不了解为6人,所占百分比为10%,所以调查人数为60人,比较了解为18人,则所占百分比为30%,那么了解一点的所占百分比是60%,人数为36人;
(3)用总人数乘以“比较了解”所占百分比即可求解.
详解:
(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)如上图;
(3)500×30%=150(名),
∴七年级约有150名学生比较了解“低碳”知识.
点睛:考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
25、(1)AD=3;(2)S△ABC=9+3.
【解析】
试题分析:(1)根据三角形内角和可得∠DAC=45°,根据等角对等边可得AD=CD,然后再根据勾股定理可计算出AD的长;
(2)根据三角形内角和可得∠BAD=30°,再根据直角三角形的性质可得AB=2BD,然后利用勾股定理计算出BD的长,进而可得BC的长,然后利用三角形的面积公式计算即可.
解:(1)∵∠C=45°,AD是△ABC的边BC上的高,∴∠DAC=45°,∴AD=CD.
∵AC2=AD2+CD2,∴62=2AD2,∴AD=3
(2)在Rt△ADB中,∵∠B=60°,∴∠BAD=30°,∴AB=2BD.
∵AB2=BD2+AD2,∴(2BD)2=BD2+AD2,BD=.
∴S△ABC=BC·AD= (BD+DC)·AD=×(+3)×3=9+3.
26、(1)(a-b)(x+y);(2)
【解析】
(1)提出公因式(a-b)即可;
(2)根据分式方程的解法,去分母,即可解出.
【详解】
(1)分解因式:
解:原式=
(2)解分式方程:
解:去分母得,
解这个方程,得
经检验:是原方程的解.
本题考查了因式分解及分式方程的解法,解题的关键是掌握提公因式法及分式方程的解法.
题号
一
二
三
四
五
总分
得分
批阅人
植树株数(株)
5
6
7
小组个数
3
4
3
2025届江西省赣州市蓉江新区潭东中学九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2025届江西省赣州市蓉江新区潭东中学九年级数学第一学期开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省赣州市蓉江新区潭东中学2023-2024学年九上数学期末质量检测试题含答案: 这是一份江西省赣州市蓉江新区潭东中学2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,属于必然事件的是等内容,欢迎下载使用。
2023-2024学年江西省赣州蓉江新区潭东中学九年级数学第一学期期末综合测试试题含答案: 这是一份2023-2024学年江西省赣州蓉江新区潭东中学九年级数学第一学期期末综合测试试题含答案,共7页。试卷主要包含了对于二次函数y=,若,且,则的值是,方程的解是,下列事件等内容,欢迎下载使用。