江西省吉安市峡江县2024年数学九上开学复习检测模拟试题【含答案】
展开
这是一份江西省吉安市峡江县2024年数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,AD=8,点E,F分别是AB,AC的中点,则EF等于( )
A.2B.3C.4D.5
2、(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a1,则a>1”是假命题的反例是( )
A.a=-2.B.a==-1C.a=1D.a=2
6、(4分)以下列各组数为边长,不能构成直角三角形的是( )
A.3,4,5B.9,12,15C.,2,D.0.3,0.4,0.5
7、(4分)下列一元二次方程中,有两个不相等实数根的是()
A.B.
C.D.
8、(4分)下列图形具有稳定性的是( )
A.三角形B.四边形C.五边形D.六边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,△ABO的面积为3,且AO=AB,反比例函数y= 的图象经过点A,则k的值为___.
10、(4分)如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.
11、(4分)对甲、乙两台机床生产的同一种零件进行抽样检测(抽查的零件个数相同),其平均数、方差的计算结果是:机床甲:,;机床乙:,.由此可知:____(填甲或乙)机床性能较好.
12、(4分)比较大小:________.
13、(4分)如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组,并把解集表示在下面的数轴上.
15、(8分)实践与探究
如图,在平面直角坐标系中,直线交轴于点,交轴于点,点坐标为。直线与直线相交于点,点的横坐标为1。
(1)求直线的解析式;
(2)若点是轴上一点,且的面积是面积的,求点的坐标;
16、(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.
(1)求甲、乙两种商品每件的价格各是多少元?
(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?
17、(10分)(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.
(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;
(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;
(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.
18、(10分)完成下面推理过程
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF= ,
∠ABE= .( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DEB. ( )
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.
20、(4分)_______.
21、(4分)在数学课上,老师提出如下问题:
如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.
小明的折叠方法如下:
如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.
老师说:“小明的作法正确.”
请回答:小明这样折叠的依据是______________________________________.
22、(4分)有一个一元二次方程,它的一个根 x1=1,另一个根-2<x2<1. 请你写出一个符合这样条件的方程:_________.
23、(4分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)6月18日,四川宜宾长宁县发生6.0级地震,为救助灾区,某校学生会向全校学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:
(1)本次被调查的学生有______人,扇形统计图中______.
(2)将条形统计图补充完整.
(3)本次调查获取的样本数据的众数是______,中位数是______;
(4)若该校有1800名学生,根据以上信息,估计全校本次活动捐款金额为10元的学生有多少人.
25、(10分)如图,AC是平行四边形ABCD的一条对角线,过AC中点O的直线分别交 AD,BC 于点 E,F.
(1)求证:四边形AECF是平行四边形;
(2)当 EF 与 AC 满足什么条件时,四边形 AECF 是菱形?并说明理由.
26、(12分)如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任到一点P(点A除外),过点P作EF∥AB,分别交AC、BC于点E、F,作PQ∥AC,交AB于点Q,连接QE与AD相交于点G.
(1)求证:四边形AQPE是菱形.
(2)四边形EQBF是平行四边形吗?若是,请证明;若不是,请说明理由.
(3)直接写出P点在EF的何处位置时,菱形AQPE的面积为四边形EQBF面积的一半.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用平行四边形性质得到BC长度,然后再利用中位线定理得到EF
【详解】
在▱ABCD中,AD=8,得到BC=8,因为点E,F分别是AB,AC的中点,所以EF为△ABC的中位线,EF=,故选C
本题主要考查平行四边形性质与三角形中位线定理,属于简单题
2、C
【解析】
分析:根据抛物线开口方向得a<0,可对①进行判断;把x=-1代入y=ax2+bx+c,可对②进行判断;根据抛物线与x轴的交点可对③进行判断,根据抛物线的对称轴小于1,可对④进行判断.
详解:抛物线开口向下:a
相关试卷
这是一份江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省吉安市2024-2025学年数学九上开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
这是一份2025届江西省吉安市七校联盟数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。