搜索
    上传资料 赚现金
    英语朗读宝

    江西省南昌育华学校2025届数学九年级第一学期开学经典模拟试题【含答案】

    江西省南昌育华学校2025届数学九年级第一学期开学经典模拟试题【含答案】第1页
    江西省南昌育华学校2025届数学九年级第一学期开学经典模拟试题【含答案】第2页
    江西省南昌育华学校2025届数学九年级第一学期开学经典模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省南昌育华学校2025届数学九年级第一学期开学经典模拟试题【含答案】

    展开

    这是一份江西省南昌育华学校2025届数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列式子变形是因式分解的是( )
    A.x2-2x-3=x(x-2)-3
    B.x2-2x-3=(x-1)2-4
    C.(x+1)(x-3)=x2-2x-3
    D.x2-2x-3=(x+1)(x-3)
    2、(4分)点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )
    A.75°B.60°C.30°D.45°
    3、(4分)下面四个多项式中,能进行因式分解的是( )
    A.x2+y2B.x2﹣yC.x2﹣1D.x2+x+1
    4、(4分)已知x=+1,y=﹣1,则x2+xy+y2的值为( )
    A.4B.6C.8D.10
    5、(4分)如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
    A.B.
    C.D.
    6、(4分)15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
    A.平均数B.中位数C.众数D.方差
    7、(4分)如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于( )
    A.B.C.D.
    8、(4分)下列各数:其中无理数的个数是( )
    A.4B.3C.2D.1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图1,平行四边形纸片的面积为120,,.沿两对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是 .
    10、(4分)在湖的两侧有A,B两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为50米,则A,B之间的距离应为______米.
    11、(4分)若代数式的值等于0,则x=_____.
    12、(4分)将直线向上平移1个单位,那么平移后所得直线的表达式是_______________
    13、(4分)把多项式因式分解成,则的值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF⊥AE 于 F.
    (1)请判断△PFA 与△ABE 是否相似,并说明理由;
    (2)当点 P 在射线 AD 上运动时,设 PA=x,是否存在实数 x,使以 P,F,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.
    15、(8分)如图,在平面直角坐标系xOy中,A(1,1),B(4,1),C(2,3).
    (1)在图中作出△ABC关于y轴的轴对称图形△A′B′C′;
    (2)在图中作出△ABC关于原点O中心对称图形△A"B"C".
    16、(8分)已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.
    17、(10分)如图1,两个全等的直角三角板ABC和DEF重叠在一起,其中∠ACB=∠DFE=90°,∠A=60°,AC=1,固定△ABC,将△DEF沿线段AB向右平移(即点D在线段AB上),回答下列问题:
    (1)如图2,连结CF,四边形ADFC一定是 形.
    (2)连接DC,CF,FB,得到四边形CDBF.
    ①如图3,当点D移动到AB的中点时,四边形CDBF是 形.其理由?
    ②在△DEF移动过程中,四边形CDBF的形状在不断改变,但它的面积不变化,其面积为 .
    18、(10分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为_____.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算:(-2019)0×5-2=________.
    20、(4分)为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)
    21、(4分)将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为_____.
    22、(4分)当a=______时,的值为零.
    23、(4分)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过A1点作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2019的坐标为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)黄连是重庆市石柱县的特产,近几年黄连的种植在石柱县脱贫攻坚战中发挥着重要的作用.今年6月,某药材公司与黄连种植户签订收购协议:收购5﹣6年期黄连和6年以上期黄连共1000千克,其中5﹣6年期的黄连收购价格为每千克240元,6年以上期的黄连收购价格为每千克200元
    (1)若药材公司共支付黄连种植户224000元,那么药材公司收购的5﹣6年期黄连和6年以上期黄连各多少千克?
    (2)预计今年10﹣12月黄连收割上市后,5﹣6年期黄连的售价为每千克280元,6年以上期黄连的售价为每千克250元;药材公司收购的5﹣6年期黄连的数量不少于6年以上期黄连数量的3倍,药材公司应收购5﹣6年期黄连多少千克才能使售完这批黄连后获得的利润最大,最大利润是多少?
    25、(10分)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:
    (1)已知点C(1,3),D(-4,-4),E(5,-),其中是平面直角坐标系中的巧点的是______;
    (2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;
    (3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.
    26、(12分)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.
    (1)补充完成下面的成绩统计分析表:
    (2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)
    (3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    因式分解就是把整式分解成几个整式积的形式,根据定义即可进行判断.
    【详解】
    A、没把一个多项式转化成几个整式积的形式,故A错误;
    B、没把一个多项式转化成几个整式积的形式,故B错误;
    C、是整式的乘法,故C次错误;
    D、把一个多项式转化成几个整式积的形式,故D正确,
    故选D.
    本题考查了因式分解的定义,因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算,熟练掌握因式分解的定义是解题的关键.
    2、D
    【解析】
    过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.
    【详解】
    过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,
    ∵四边形ABCD为正方形,
    ∴AD=AB,∠A=∠ABC=90°,
    ∴∠ADP+∠APD=90°,
    由旋转可得:PD=PE,∠DPE=90°,
    ∴∠APD+∠EPF=90°,
    ∴∠ADP=∠EPF,
    在△APD和△FEP中,
    ∵,
    ∴△APD≌△FEP(AAS),
    ∴AP=EF,AD=PF,
    又∵AD=AB,
    ∴PF=AB,即AP+PB=PB+BF,
    ∴AP=BF,
    ∴BF=EF,又∠F=90°,
    ∴△BEF为等腰直角三角形,
    ∴∠EBF=45°,又∠CBF=90°,
    则∠CBE=45°.
    故选D.
    此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.
    3、C
    【解析】
    根据因式分解的定义对各选项分析后利用排除法求解.
    【详解】
    A、x2+y2不能进行因式分解,故本选项错误;
    B、x2-y不能进行因式分解,故本选项错误;
    C、x2-1能利用平方差公式进行因式分解,故本选项正确;
    D、x2+x+1不能进行因式分解,故本选项错误.
    故选C.
    本题主要考查了因式分解定义,因式分解就是把一个多项式写成几个整式积的形式,是基础题,比较简单.
    4、D
    【解析】
    根据,将代数式变形,再代值计算即可.
    【详解】
    解:,
    当,时
    原式,故选:D.
    本题考查了与二次根式有关的化简代值计算,需要先将代数式化为较简便的形式,再代值计算.
    5、C
    【解析】
    本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.
    【详解】
    最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.
    故本题选C.
    本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.
    6、B
    【解析】
    由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
    故选B.
    本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    7、A
    【解析】
    根据平行线的性质得到∠ACD=∠CAB=63°,根据旋转变换的性质求出∠ADC=∠ACD=63°,根据三角形内角和定理求出∠CAD=54°,然后计算即可.
    【详解】
    解:∵DC∥AB,
    ∴∠ACD=∠CAB=63°,
    由旋转的性质可知,AD=AC,∠DAE=∠CAB=63°,
    ∴∠ADC=∠ACD=63°,
    ∴∠CAD=54°,
    ∴∠CAE=9°,
    ∴∠BAE=54°,
    故选:A.
    本题考查的是旋转变换,掌握平行线的性质、旋转变换的性质是解题的关键.
    8、D
    【解析】
    依据无理数的三种常见类型进行判断即可.
    【详解】
    解:在中,是无理数,有1个,
    故选:D.
    此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、26
    【解析】
    如图,则可得对角线EF⊥AD,且EF与平行四边形的高相等.
    ∵平行四边形纸片ABCD的面积为120,AD=20,
    ∴EF="120/20" =6,
    又BC=20,
    ∴对角线之和为20+6=26,
    10、1
    【解析】
    根据三角形中位线的性质定理,解答即可.
    【详解】
    ∵点D、E分别为AC、BC的中点,
    ∴AB=2DE=1(米),
    故答案为:1.
    本题主要考查三角形中位线的性质定理,掌握三角形的中位线平行于第三边,且等于第三边长的一半,是解题的关键.
    11、2
    【解析】
    由分式的值为零的条件得x2-5x+6=0,2x-6≠0,
    由x2-5x+6=0,得x=2或x=3,
    由2x-6≠0,得x≠3,
    ∴x=2.
    12、
    【解析】
    平移时k的值不变,只有b发生变化.
    【详解】
    原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,
    那么新直线的k=2,b=0+1=1,
    ∴新直线的解析式为y=2x+1.
    故答案为:y=2x+1.
    本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.
    13、
    【解析】
    根据多项式的乘法法则计算,然后即可求出m的值.
    【详解】
    ∵=x2+6x+5,
    ∴m=6.
    故答案为:6.
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解是乘法运算的逆运算.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)存在,x的值为2或5.
    【解析】
    (1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;
    (2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.
    【详解】
    (1)证明:∵AD∥BC,
    ∴∠PAF=∠AEB.
    ∵∠PFA=∠ABE=90°,
    ∴△PFA∽△ABE.
    (2)
    若△EFP∽△ABE,则∠PEF=∠EAB.
    如图,连接PE,DE,
    ∴PE∥AB.
    ∴四边形ABEP为矩形.
    ∴PA=EB=2,即x=2.
    如图,延长AD至点P,作PF⊥AE于点F,连接PE,
    若△PFE∽△ABE,则∠PEF=∠AEB.
    ∵∠PAF=∠AEB,
    ∴∠PEF=∠PAF.
    ∴PE=PA.
    ∵PF⊥AE,
    ∴点F为AE的中点.
    ∵AE=,
    ∴EF=AE=.
    ∵,
    ∴PE=5,即x=5.
    ∴满足条件的x的值为2或5.
    此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线.
    15、(1)答案见解析;(2)答案见解析.
    【解析】
    (1)在坐标轴中找出点A'(-1,1),B(-4,1),C'(-2,3),连线即可.
    (2)在坐标轴中找出点A" (-1,-1),B"(-4,-1), C"(-2,-3),连线即可.
    【详解】
    (1)△ABC关于y轴的轴对称图形△A′B′C′的坐标分别为A'(-1,1),B'(-4,1),C'(-2,3),
    在坐标轴中找出点,连线即可.

    (2)△ABC关于原点O中心对称图形△A"B"C"的坐标分别为A" (-1,-1),B"(-4,-1), C"(-2,-3),
    在坐标轴中找出点,连线即可.
    本题主要考查了坐标轴中图形的对称,正确掌握坐标轴中图形的对称图形的坐标是解题的关键.
    16、-3,-1.
    【解析】
    首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.
    【详解】
    ①×1得:1x-4y=1m③,
    ②-③得:y=,
    把y=代入①得:x=m+,
    把x=m+,y=代入不等式组中得:

    解不等式组得:-4≤m≤-,
    则m=-3,-1.
    考点:1.一元一次不等式组的整数解;1.二元一次方程组的解.
    17、(1)平行四边;(2)①见解析;②
    【解析】
    (1)根据平移的性质即可证明四边形ADFC是平行四边形;
    (2)①根据菱形的判定定理即可求解;
    ②根据四边形CDBF的面积=DF×BC即可求解.
    【详解】
    解:(1)∵平移
    ∴AC∥DF,AC=DF
    ∴四边形ADFC是平行四边形
    故答案为平行四边
    (2)①∵△ACB是直角三角形,D是AB的中点
    ∴CD=AD=BD
    ∵AD=CF,AD∥FC
    ∴BD=CF
    ∵AD∥FC,BD=CF
    ∴四边形CDBF是平行四边形
    又∵CD=BD
    ∴四边形CDBF是菱形.
    ②∵∠A=60°,AC=1,∠ACB=90°
    ∴BC=,DF=1
    ∵四边形CDBF的面积=DF×BC
    ∴四边形CDBF的面积=
    此题主要考查三角形的平移,解题的关键是熟知菱形的判定与性质.
    18、5m.
    【解析】
    根据勾股定理即可得到结果.
    【详解】
    解:在Rt△ABC中BC=12,AC=13,AB2+BC2=AC2
    ∴AB2=AC2-BC2=132-122=25
    ∴AB=5
    答:地面钢缆固定点A到电线杆底部B的距离为5米.
    考点:本题考查勾股定理的应用
    点评:解答本题的关键是熟练掌握勾股定理:直角三角形的两直角边的平方和等于斜边的平方.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据零指数幂的性质及负整数指数幂的性质即可解答.
    【详解】
    原式=1×.
    故答案为:.
    本题考查了零指数幂的性质及负整数指数幂的性质,熟练运用零指数幂的性质及负整数指数幂的性质是解决问题的关键.
    20、抽样调查.
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
    【详解】
    解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,
    故答案为:抽样调查.
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    21、y=-2x-1.
    【解析】
    直接根据“上加下减”的平移规律求解即可.
    【详解】
    直线y=-2x+4向下平移5个单位长度后:y=-2x+4-5,即y=-2x-1.
    故答案为:y=-2x-1.
    本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.
    22、﹣1.
    【解析】
    根据分式的值为零的条件列式计算即可.
    【详解】
    由题意得:a2﹣1=2,a﹣1≠2,
    解得:a=﹣1.
    故答案为:﹣1.
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为2;②分母不为2.这两个条件缺一不可.
    23、(-21009,-21010)
    【解析】
    根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.
    【详解】
    当x=1时,y=2,
    ∴点A1的坐标为(1,2);
    当y=-x=2时,x=-2,
    ∴点A2的坐标为(-2,2);
    同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
    ∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
    A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).
    ∵2019=504×4+3,
    ∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).
    故答案为(-21009,-21010).
    本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)收购的5﹣6年期黄连600千克,6年以上期黄连400千克;(2)收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.
    【解析】
    (1)根据题意列方程或方程组进行解答即可,
    (2)先求出利润与销售量之间的函数关系式和自变量的取值范围,再根据函数的增减性确定何时利润最大.
    【详解】
    解:(1)设收购的5﹣6年期黄连x千克,则6年以上期黄连(1000﹣x)千克,由题意得:240x+200(1000﹣x)=224000,
    解得:x=600,
    当x=600时,1000﹣x=400,
    答:收购的5﹣6年期黄连600千克,6年以上期黄连400千克,
    (2)设收购的5﹣6年期黄连y千克,则6年以上期黄连(1000﹣y)千克,销售利润为z元,由题意得:
    z=(280﹣240)y+(250﹣200)(1000﹣y)=﹣10y+50000,
    z随y的增大而减小,
    又∵y≥3(1000﹣y),
    ∴y≥750,
    当y=750时,z最小=﹣7500+50000=42500元,
    答:收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.
    考查一次函数的性质、一元一次方程等知识,正确列方程、求出函数表达式是解决问题的关键.
    25、(1)D和E;(2)m=,k=25;(3)N的坐标为(-6,-3)或(3,6).
    【解析】
    (1)利用矩形的周长公式、面积公式结合巧点的定义,即可找出点D,E是巧点;
    (2)利用巧点的定义可得出关于m的一元一次方程,解之可得出m的值,再利用反比例函数图象上点的坐标特征,可求出k值;
    (3)设N(x,x+3),根据巧点的定义得到2(|x|+|x+3|)=|x||x+3|,分三种情况讨论即可求解.
    【详解】
    (1)∵(4+4)×2=4×4,(5+)×2=5×,(1+3)×2≠1×3,
    ∴点D和点E是巧点,
    故答案为:D和E;
    (2)∵点M(m,10)(m>0),
    ∴矩形的周长=2(m+10),面积=10m.
    ∵点M是巧点,
    ∴2(m+10)=10m,解得:m=,
    ∴点M(,10).
    ∵点M在双曲线y=上,
    ∴k=×10=25;
    (3)设N(x,x+3),则2(|x|+|x+3|)=|x||x+3|,
    当x≤-3时,化简得:x2+7x+6=0,解得:x=-6或x=-1(舍去);
    当-3<x<0时,化简得:x2+3x+6=0,无实根;
    当x≥0时,化简得:x2-x-6=0,解得:x=3或x=-2(舍去),
    综上,点N的坐标为(-6,-3)或(3,6).
    本题主要考查一次函数图象以及反比例函数图象上点的坐标特征、矩形的周长及面积以及解一元二次方程,理解巧点的定义,分x≤-3、-3<x<0及x≥0三种情况,求出N点的坐标,是解题的关键.
    26、(1)6;7.1;(2)甲;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组
    【解析】
    (1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可:
    ∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10,∴甲组中位数为6分
    ∵乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(分)
    (2)根据两组的中位数,观察表格,成绩为7分处于中游略偏上,应为甲组的学生.
    (3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组
    解:(1)填表如下:
    (2)甲.
    (3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组
    故答案为(1)6;7.1;(2)甲
    题号





    总分
    得分
    组别
    平均分
    中位数
    方差
    合格率
    优秀率
    甲组
    6.7
    3.41
    90%
    20%
    乙组
    7.5
    1.69
    80%
    10%
    组别
    平均分
    中位数
    方差
    合格率
    优秀率
    甲组
    6.7
    6
    3.41
    90%
    20%
    乙组
    7.1
    7.5
    1.69
    80%
    10%

    相关试卷

    江西省育华学校2024-2025学年数学九年级第一学期开学经典试题【含答案】:

    这是一份江西省育华学校2024-2025学年数学九年级第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江西省育华学校数学九上开学统考模拟试题【含答案】:

    这是一份2024年江西省育华学校数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省育华学校2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案:

    这是一份江西省育华学校2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了正六边形的边心距与半径之比为,下列标志中是中心对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map