江西省余干县2024年数学九上开学学业质量监测试题【含答案】
展开这是一份江西省余干县2024年数学九上开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数中,能构成直角三角形的是( )
A.4,5,6B.1,1,C.6,8,11D.5,12,23
2、(4分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠ABC=75°,则∠EAF的度数为( )
A.60°B.65°C.70°D.75°
3、(4分)方程x(x-2)=0的根是( )
A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=-2
4、(4分)如果分式有意义,则x的取值范围是( )
A.x=﹣3B.x>﹣3C.x≠﹣3D.x<﹣3
5、(4分)在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:
小青:OE=OF;小何:四边形DFBE是正方形;
小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,
这四位同学写出的结论中不正确的是( )
A.小青B.小何C.小夏D.小雨
6、(4分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为( )
A.B.
C.D.
7、(4分)已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6cm2,周长是△ABC的一半.AB=8cm,则AB边上高等于 ( )
A.3 cm B.6 cm C.9cm D.12cm
8、(4分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是( )
A.84分B.87.6分C.88分D.88.5分
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知x、y为直角三角形两边的长,满足,则第三边的长为________.
10、(4分)若关于x的不等式组的解集为﹣<x<﹣6,则m的值是_____.
11、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为_____.
12、(4分)一次函数的图像与两坐标轴围成的三角形的面积是_________.
13、(4分)已知,若是二元一次方程的一个解,则代数式的值是____
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.
(1)求证:BD=2CD;
(2)若CD=2,求△ABD的面积.
15、(8分),若方程无解,求m的值
16、(8分)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.
(1)求证:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°,求∠B的度数.
17、(10分)如图,已知在四边形中,于,于,,,求证:四边形是平行四边形.
18、(10分)八年级380名师生参加户外拓展活动,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表
(1)设租用乙种客车x辆,租车总费用为y元求出y(元)与x(辆)之间的函数表达式;
(2)当乙种客车租用多少辆时,能保障所有的师生能参加户外拓展活动且租车费用最少,最少费用是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A= 度.
20、(4分)已知矩形,给出三个关系式:①②③如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________ .
21、(4分)分式方程的解是_____.
22、(4分)如图,点A在双曲线y=上,AB⊥y轴于B,S△ABO =3,则k=__________
23、(4分)如图,正方形ABCD中,AB=6,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____。
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:a、b、c满足
求:(1)a、b、c的值;
(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
25、(10分)已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).
(1)求此一次函数的解析式;
(2)求此一次函数的图象与x轴、y轴的交点坐标;
(3)求此一次函数的图象与两坐标轴所围成的三角形面积.
26、(12分)如图,在中,,平分交于点, 于点, 过点作交于点,连接.
(1)求证:四边形是菱形;
(2)若,, 求菱形的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】
解:A、,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、故不是直角三角形,错误.
故选:B.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
2、D
【解析】
先根据平行四边形的性质,求得∠C的度数,再根据四边形内角和,求得∠EAF的度数.
【详解】
解:∵平行四边形ABCD中,∠ABC=75°,
∴∠C=105°,
又∵AE⊥BC于E,AF⊥CD于F,
∴四边形AECF中,∠EAF=360°-180°-105°=75°,
故选:D.
本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.
3、C
【解析】
试题分析:∵x(x-1)= 0
∴x=0或x-1=0,
解得:x1=0,x1=1.
故选C.
考点: 解一元二次方程-因式分解法.
4、C
【解析】
根据分母不等于零时分式有意义,可得答案.
【详解】
由题意,得:x+1≠0,
解得:x≠﹣1.
故选C.
本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.
5、B
【解析】
根据平行四边形的性质可得OA=OC,CD∥AB,从而得∠ACE=∠CAF,可判断出小雨的结论正确,证明△EOC≌△FOA,可得OE=OF,判断出小青的结论正确,由△EOC≌△FOA继而可得出S四边形AFED=S四边形FBCE,判断出小夏的结论正确,由△EOC≌△FOA可得EC=AF,继而可得出四边形DFBE是平行四边形,从而可判断出四边形DFBE是菱形,无法判断是正方形,判断出故小何的结论错误即可.
【详解】
∵四边形ABCD是平行四边形,
∴OA=OC,CD∥AB,
∴∠ACE=∠CAF,(故小雨的结论正确),
在△EOC和FOA中,
,
∴△EOC≌△FOA,
∴OE=OF(故小青的结论正确),
∴S△EOC=S△AOF,
∴S四边形AFED=S△ADC=S平行四边形ABCD,
∴S四边形AFED=S四边形FBCE,(故小夏的结论正确),
∵△EOC≌△FOA,
∴EC=AF,∵CD=AB,
∴DE=FB,DE∥FB,
∴四边形DFBE是平行四边形,
∵OD=OB,EO⊥DB,
∴ED=EB,
∴四边形DFBE是菱形,无法判断是正方形,(故小何的结论错误),
故选B.
本题考查了平行四边形的性质、菱形的判定、全等三角形的判定与性质、正方形的判定等,综合性较强,熟练掌握各相关性质与定理是解题的关键.
6、A
【解析】
分析:根据定义可将函数进行化简.
详解:当﹣1≤x<0,[x]=﹣1,y=x+1
当0≤x<1时,[x]=0,y=x
当1≤x<2时,[x]=1,y=x﹣1
……
故选A.
点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.
7、B
【解析】
解:由题意得,
∵△ABC∽△A′B′C′,△A′B′C′的周长是△ABC的一半
∴位似比为2
∴S△ABC=4S△A′B′C=24cm2,
∴AB边上的高等于6cm.
故选B.
8、B
【解析】
根据加权平均数的计算方法进行计算即可得出答案.
故选B.
【详解】
解:(分).
本题考查了加权平均数.理解“权”的含义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、、或.
【解析】
试题分析:∵|x2-4|≥0,,
∴x2-4=0,y2-5y+6=0,
∴x=2或-2(舍去),y=2或3,
①当两直角边是2时,三角形是直角三角形,则斜边的长为:;
②当2,3均为直角边时,斜边为;
③当2为一直角边,3为斜边时,则第三边是直角,长是.
考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理.
10、1
【解析】
先解不等式组得出其解集为,结合可得关于的方程,解之可得答案.
【详解】
解不等式,得:,
解不等式,得:,
∵不等式组的解集为,
∴,
解得,
故答案为:1.
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
11、(,0)
【解析】
【分析】根据一次函数解析式求出点A、点B的坐标,再由中点坐标公式求出点C、点D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,结合C、D′的坐标求出直线CD′的解析式,令y=0求出x的值,从而得到点P的坐标.
【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,
如图,
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4),
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0),
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,2),点D(0,2),
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-2),
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,2),D′(0,-2),
∴有,解得:,
∴直线CD′的解析式为y=-x-2,
令y=0,则0=-x-2,解得:x=-,
∴点P的坐标为(-,0),
故答案为(-,0).
【点睛】本题考查了待定系数法、一次函数以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式,解决此类问题时找点的坐标,常利用待定系数法求出函数解析式.
12、1
【解析】
分析:首先求出直线y=2x-6与x轴、y轴的交点的坐标,然后根据三角形的面积公式得出结果.
详解:∵当x=0时,y=0-6=-6,
∴图像与y轴的交点是(0,-6);
∵当y=0时,2x-6=0,
∴x=3,
∴图像与x轴的交点是(3,0);
∴S△AOB=×3×6=1.
故答案为:1.
点睛:本题考查了一次函数图像与坐标轴的交点问题,分别令x=0和y=0求出图像与坐标轴的交点是解答本题的关键.
13、
【解析】
把代入方程,得到,然后对进行化简,最后利用整体代入,即可得到答案.
【详解】
解:把代入方程,得到,
∵
∴原式=,
故答案为:.
此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.注意灵活运用整体代入法解题.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)6
【解析】
(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;
(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,,再根据△ABD的面积=进行计算即可.
【详解】
解:(1)如图,过D作DE⊥AB于E,
∵∠C=90°,AD是△ABC的角平分线,
∴DE=CD,
又∵∠B=30°,
∴Rt△BDE中,DE=BD,
∴BD=2DE=2CD;
(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,
∴∠BAD=∠B=30°,
∴AD=BD=2CD=4,
∴Rt△ACD中,AC=,
∴△ABD的面积为.
本题主要考查了直角三角形的性质以及勾股定理的运用,利用角平分线的的性质是解决问题的关键.
15、m的值为-1或-6或
【解析】
分式方程去分母转化为整式方程,整理后根据一元一次方程无解条件求出m的值;由分式方程无解求出x的值,代入整式方程求出m的值即可.
【详解】
解:方程两边同时乘以(x+2)(x-1)得:
整理得:
当m+1=0时,该方程无解,此时m= -1;
当m+1≠0时,则原方程有增根,原方程无解,
∵原分式方程有增根,
∴(x+2)(x-1)=0,
解得:x=-2或x=1,
当x=-2时,;当x=1时,m= -6
∴ m的值为-1或-6或
此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.
16、(1)见解析;(2)108°
【解析】
(1)利用平行四边形的性质得出AD∥BC,AD=BC,证出∠D=∠ECF,由ASA即可证出△ADE≌△FCE;
(2)证出AB=FB,由等腰三角形的性质和三角形内角和定理即可得出答案.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠D=∠ECF,
在△ADE和△FCE中,
∴△ADE≌△FCE(ASA);
(2)∵△ADE≌△FCE,
∴AD=FC,
∵AD=BC,AB=2BC,
∴AB=FB,
∴∠BAF=∠F=36°,
∴∠B=180°-2×36°=108°.
运用了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
17、见解析
【解析】
由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.
【详解】
证明:∵AE⊥BD于E,CF⊥BD于F,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,
∴△ADE≌△CBF(SAS),
∴AD=BC,∠ADE=∠CBF,
∴AD∥BC,
∴四边形ABCD是平行四边形.
18、(1)y=-100x+3850;(2)当乙为2辆时,能保障费用最少,最少费用为3650元.
【解析】
(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;
(2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.
【详解】
(1)由题意,得
y=550(7-x)+450x,
化简,得y=-100x+3850,
即y(元)与x(辆)之间的函数表达式是y=-100x+3850;
(2)由题意,得45x+60(7﹣x)≥380,解得,x≤(x为自然数),
∵y=-100x+3850中k=-100<0,∴y随着x的增大而减小,
∴x=2时,租车费用最少,最少为:y=-100×2+3850=3650(元),
即当乙种客车有2辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.
本题考查了一次函数的应用,弄清题意,正确分析各量间的关系是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、60
【解析】
试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.
考点:线段垂直平分线的性质
20、① 一组邻边相等的矩形是正方形
【解析】
根据正方形的判定定理添加一个条件使得矩形是菱形即可.
【详解】
解:∵四边形ABCD是矩形,AB=BC,
∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).
故答案为:①,一组邻边相等的矩形是正方形.
本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.
21、
【解析】
两边都乘以x(x-1),化为整式方程求解,然后检验.
【详解】
原式通分得:
去分母得:
去括号解得,
经检验,为原分式方程的解
故答案为
本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
22、6
【解析】
根据反比例函数系数k的几何意义得出S△ABO=|k|,即可求出表达式.
【详解】
解: ∵△OAB的面积为3,∴k=2S△ABO=6,
∴反比例函数的表达式是y=
即k=6
本题考查反比例函数系数k的几何意三角形面积=|k|,学生们熟练掌握这个公式.
23、3
【解析】
连接DE,交AC于点P,连接BD.点B与点D关于AC对称,DE的长即为PE+PB的最小值,根据勾股定理即可得出DE的长度.
【详解】
连接DE,交AC于点P,连接BD.
∵点B与点D关于AC对称,
∴DE的长即为PE+PB的最小值,
∵AB=6,E是BC的中点,
∴CE=3,
在Rt△CDE中,
DE=
=
=
=3.
故答案为3.
主要考查轴对称,勾股定理等考点的理解,作出辅助线得出DE的长即为PE+PB的最小值为解决本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)a=2,b=1,c=3;(2)能,1+1.
【解析】
(1)根据非负数的性质列式求解即可;
(2)根据三角形的任意两边之和大于第三边进行验证即可.
【详解】
解:(1)根据题意得,a-=0,b-1=0,c-3=0,
解得a=2,b=1,c=3;
(2)能.
∵2+3=1>1,
∴能组成三角形,
三角形的周长=2+1+3=1+1.
本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,三角形的三边关系.
25、 (1) y= x-.(2) 与x轴的交点坐标(,0),与y轴的交点坐标(0,-);(3).
【解析】
试题分析:根据一次函数解析式的特点,可得出方程组,得到解析式;
再根据解析式求出一次函数的图象与x轴、y轴的交点坐标;
然后求出一次函数的图象与两坐标轴所围成的三角形面积.
解:(1)根据一次函数解析式的特点,
可得出方程组,
解得,
则得到y=x﹣.
(2)根据一次函数的解析式y=x﹣,
得到当y=0,x=;
当x=0时,y=﹣.
所以与x轴的交点坐标(,0),与y轴的交点坐标(0,﹣).
(3)在y=x﹣中,
令x=0,解得:y=,
则函数与y轴的交点是(0,﹣).
在y=x﹣中,
令y=0,解得:x=.
因而此一次函数的图象与两坐标轴所围成的三角形面积是:×=.
26、(1)见解析;(2)
【解析】
(1)由角平分线的性质可得∠ABD=∠CBD,再由垂直的定义得出∠EDB=∠CDB,然后由CF∥DE,得出∠EDB=∠CFD,最后利用菱形的判定解答即可;
(2)利用勾股定理及菱形的性质求解即可.
【详解】
解:(1)证明:解:(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,
∵∠ACB=90°,DE⊥AB,
∴DE=CD, ∠CBD+∠CDB=90°, ∠EBD+∠EDB=90°,
∴∠EDB=∠CDB, ∵CF∥DE,
∴∠EDB=∠CFD, ∴∠CDB=∠CFD,
∴CD=CF, ∴DE=CF, ∴DE=EF=FC=DC
∴ 四边形是菱形.
(2)在RT△ADE中,,,
∴∠A=30°,AC= ,
在RT△ADE中,∵∠A=30°,∴AD=2DE,
∵四边形是菱形, ∴DE=DC, ∴AD=2DC,
∴AC=3DC=6,∴DC=2,
∴四边形CDEF的周长为:2×4=8.
本题考查了角平分线的性质,勾股定理及菱形的判定与性质,解题的关键是掌握这些性质和判定.
题号
一
二
三
四
五
总分
得分
甲种客车
乙种客车
载客量(座/辆)
60
45
租金(元/辆)
550
450
相关试卷
这是一份江西省上饶市广信区2024年九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省景德镇一中2025届九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省抚州市2024年数学九上开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。