辽宁大连甘井子区育文中学2025届九年级数学第一学期开学教学质量检测试题【含答案】
展开这是一份辽宁大连甘井子区育文中学2025届九年级数学第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中,真命题是( )
A.平行四边形的对角线相等 B.矩形的对角线平分对角
C.菱形的对角线互相平分 D.梯形的对角线互相垂直
2、(4分)下列各式成立的是 ( )
A.=2B.=-5C.=xD.=±6
3、(4分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )
A.0.1B.0.15
C.0.25D.0.3
4、(4分)下列根式中,与不是同类二次根式的是( )
A.B.C.D.
5、(4分)某校准备从甲、乙、丙、丁四个科技小组中选出一组,参加区中小学科技创新竞赛,表格记录了各组平时成绩的平均数(单位:分)及方差(单位:分2):
若要选出一个成绩好且状态稳定的组去参赛,那么应选的组是( )
A.甲B.乙C.丙D.丁
6、(4分)如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为( )
A.4B.9C.10D.4+
7、(4分)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( )
A.51B.49C.76D.无法确定
8、(4分)使函数y=有意义的自变量x的取值范围是( )
A.x≥6B.x≥0C.x≤6D.x≤0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.
10、(4分)如果+=2012, -=1,那么=_________.
11、(4分)如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.
12、(4分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.
13、(4分)周末,小李从家里出发骑车到少年宫学习绘画,学完后立即回家,他离家的距离y(km)与时间x(h)之间的函数关系如图所示,有下列结论:①他家离少年宫30km;②他在少年宫一共停留了3h;③他返回家时,离家的距离y(km)与时间x(h)之间的函数表达式是y=-20x+110;④当他离家的距离y=10时,时间x=.其中正确的是________(填序号).
三、解答题(本大题共5个小题,共48分)
14、(12分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:
政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.
(1)用含有x的代数式表示y;
(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;
(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.
15、(8分)(本题满分6分)如图所示的方格地面上,标有编号1、2、3的3
个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地
面完全相同.
(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求
小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,
则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?
16、(8分)如图,在正方形ABCD中,E、F分别为AB、BC的中点,连接CE、DF,将△CBE沿CE对折,得到△CGE,延长EG交CD的延长线于点H。
(1)求证:CE⊥DF;
(2)求的值.
17、(10分)已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF
求证:AC、EF互相平分.
18、(10分)如图,直线与反比例函数的图象交于、两点,与轴交于点,已知点的坐标为.
(1)求反比例函数的解析式;
(2)若点是反比例函数图象上一点,过点作轴于点,延长交直线于点,求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图, 是某地区 5 月份某周的气温折线图,则这个地区这个周的气温的极差是_____℃.
20、(4分)方程的解是____.
21、(4分)在平面直角坐标系中,已知一次函数y=x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”).
22、(4分)已经RtABC的面积为,斜边长为,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.
23、(4分)在平面直角坐标系 xOy 中,点O 是坐标原点,点 B 的坐标是3m, 4m 4,则OB 的最小值是____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
求证:四边形ADCE是菱形.
25、(10分)矩形中,对角线、交于点,点、、分别为、、的中点.
(1)求证:四边形为菱形;
(2)若,,求四边形的面积.
26、(12分)记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).
(1)写出y关于x的函数表达式及自变量x的取值范围;
(2)在如图直角坐标系中,用描点法画出所求函数图象;
(3)若平行四边形的一边长为4cm,一条对角线长为cm,请直接写出此平行四边形的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平行四边形、矩形、菱形、梯形的性质判断即可.
【详解】
解:A、“平行四边形的对角线相等”是假命题;
B、“矩形的对角线平分对角”是假命题;
C、“菱形的对角线互相平分”是真命题;
D、“梯形的对角线互相垂直”是假命题.
故选C.
正确的命题是真命题,错误的命题是假命题.
2、A
【解析】
分析:根据算术平方根的定义判断即可.
详解:A.,正确;
B.,错误;
C.,错误;
D.,错误.
故选A.
点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.
3、D
【解析】
∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.
4、C
【解析】
各项化简后,利用同类二次根式定义判断即可.
【详解】
A、原式=3,不符合题意;
B、原式=,不符合题意;
C、原式=2,符合题意;
D、原式=,不符合题意,
故选:C.
本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.
5、C
【解析】
先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.
【详解】
因为乙组、丙组的平均数比甲组、丁组大,
而丙组的方差比乙组的小,
所以丙组的成绩比较稳定,
所以丙组的成绩较好且状态稳定,应选的组是丙组.
故选:C.
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
6、D
【解析】
根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.
【详解】
作CE⊥AD于点E,如下图所示,
由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,
∴ =5,
解得,AD=5,
又∵BC∥AD,∠A=90°,CE⊥AD,
∴∠B=90°,∠CEA=90°,
∴四边形ABCE是矩形,
∴AE=BC=2,
∴DE=AD−AE=5−2=3,
∴CD==,
∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,
故选D.
此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算
7、C
【解析】
试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则
x2=122+52=169,
解得x=1.
故“数学风车”的周长是:(1+6)×4=2.
故选C.
8、C
【解析】
根据被开方式是非负数列式求解即可.
【详解】
解:由题意,得
6﹣x≥0,
解得x≤6,
故选:C.
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、30°
【解析】
分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
详解:∵四边形ABCD是矩形,
∴∠ADC=90°,OA=OD,
∴∠ODA=∠DAE,
∵∠CDE =2∠ADE,
∴∠ADE=90°÷3=30°,
∵DE⊥AC,
∴∠AED=90°,
∴∠DAE=60°,
∴∠ODA=60°,
∴∠BDC=90°-60°=30°;
故答案为:30°.
点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
10、1.
【解析】
根据平方差公式进行因式分解,然后代入数值计算即可.
【详解】
解:∵m+n=1,m-n=1,
∴=(m+n)(m-n)=1×1=1.
故答案为:1.
本题考查因式分解的应用,利用平方差公式分解因式,熟记平方差公式的结构特点是解题的关键.
11、10cm
【解析】
求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.
【详解】
解:∵∠A=∠B,
∴BC=AC=5cm,
∵DF∥AC,
∴∠A=∠BDF,
∵∠A=∠B,
∴∠B=∠BDF,
∴DF=BF,
同理AE=DE,
∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,
故答案为10cm.
本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.
12、
【解析】
根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
【详解】
∵四边形CDEF是正方形,AC=5,BC=12,
∴CD=ED,DE∥CF,
设ED=x,则CD=x,AD=5-x,
∵DE∥CF,
∴∠ADE=∠C,∠AED=∠B,
∴△ADE∽△ACB,
∴,
∴,
解得:x=,
故答案为.
此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
13、①②③
【解析】
分析:根据图象能够理解离家的距离随时间的变化情况进行判断即可.
详解:①他家离少年宫=30km,正确;
②他在少年宫一共停留了4﹣1=3个小时,正确;
③他返回家时,y(km)与时间x(h)之间的函数表达式是y=﹣20x+110,正确;
④当他离家的距离y=10km时,时间x=5(h)或x==(h),错误.
故答案为:①②③.
点睛:本题考查了一次函数的应用,根据图象能够理解离家的距离随时间的变化情况,是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能
【解析】
试题分析:(1)根据总价=单价×数量,即可得到结果;
(2)根据幸福村共有264户村民,沼气池修建用地708平方米,即可列不等式组求解;
(3)先根据一次函数的性质求得最少费用,与村民每户集资700元与政府补助共计的费用比较即可判断.
(1) ;
(2)由题意得
解①得x≥12
解②得x≤14
∴不等式的解为12≤x≤14
是正整数
∴x的取值为12,13,14
即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个 ;
(3)∵y=x+40中,随的增加而增加,要使费用最少,则x=12
∴最少费用为y=x+40=52(万元)
村民每户集资700元与政府补助共计:700×264+340000=524800>520000
∴每户集资700元能满足所需要费用最少的修建方案.
考点:本题考查的是一元一次不等式组的应用
点评:解答本题的关键是读懂题意,找准不等关系列出不等式组,并注意未知数的取值是正整数.
15、解: (1) 小鸟落在草坪上的概率为。
(2)用树状图列出所有可能的结果:
开始
1 2 3
2 3 1 3 1 2
所以编号为1、2的2个小方格空地种植草坪的概率是。
【解析】
试题分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.使用树状图分析时,一定要做到不重不漏.
试题解析:(1)P(小鸟落在草坪上)=
(2)用树状图或列表格列出所有问题的可能的结果:
由树状图(列表)可知,共有6种等可能结果,编号为1、2的2个小方格空地种植草坪有2种,
所以P(编号为1、2的2个小方格空地种植草坪)=
考点:1.列表法与树状图法;2.几何概率.
16、(1)见解析;(2).
【解析】
(1)运用△BCE≌Rt△CDF(SAS),再利用角的关系求得∠CKD=90°即可解题.
(2)设正方形ABCD的边长为2a,设CH=x,利用勾股定理求出a与x之间的关系即可解决问题.
【详解】
(1)证明:设EC交DF于K.
∵E,F分别是正方形ABCD边AB,BC的中点,
∴CF=BE,
在Rt△BCE和Rt△CDF中,
,
∴△BCE≌Rt△CDF(SAS),
∠BCE=∠CDF,
又∵∠BCE+∠ECD=90°,
∴∠CDF+∠ECD=90°,
∴∠CKD=90°,
∴CE⊥DF.
(2)解:设正方形ABCD的边长为2a.
EB=EG,∠BEC=∠CEG,∠EGC=∠B=90°
∵CD∥AB,
∴∠ECH=∠BEC,∴∠ECH=∠CEH,
∴EH=CH,
∵BE=EG=a,CD=CG=2a,
在Rt△CGH中,设CH=x,
∴x2=(x-a)2+(2a)2,
∴x=a,
∴GH=EH-EG=a-a=a,
∴.
本题考查的是旋转变换、翻折变换、正方形的性质、全等三角形的判定与性质等知识,熟知旋转、翻折不变性是解答此题的关键,学会构建方程解决问题.
17、证明见解析
【解析】
连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.
【详解】
解:连接AE、CF,
∵四边形ABCD为平行四边形,
∴AD∥BC,AD﹦BC,
又∵DF﹦BE,
∴AF﹦CE,
又∵AF∥CE,
∴四边形AECF为平行四边形,
∴AC、EF互相平分.
本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.
18、(1);(2).
【解析】
(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;
(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,点P的横坐标和点F的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积.
【详解】
(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y.
(2)将点P的纵坐标y=﹣1代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,∴EF=3,CE=OE+OC=2+1=3,∴S△CEFCE×EF.
本题考查了一次函数与反比例函数的交点问题,解答本题的关键是确定点A的坐标,要求同学们能结合图象及直角坐标系,将点的坐标转化为线段的长度.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、10℃
【解析】
根据极差的定义进行计算即可
【详解】
解:∵根据折线图可得:本周的最高气温为30℃,最低气温为20℃,
∴极差是:30-20=10(℃)
故答案为:10℃
本题考查了极差的定义和折线图,熟练掌握极差是最大值和最小值的差是解题的关键
20、
【解析】
根据解无理方程的方法可以解答此方程,注意无理方程要检验.
【详解】
∵,
∴,
∴1-2x=x2,
∴x2+2x-1=0,
∴(x+1)(x-1)=0,
解得,x1=-1,x2=1,
经检验,当x=1时,原方程无意义,当x=1时,原方程有意义,
故原方程的根是x=-1,
故答案为:x=-1.
本题考查无理方程,解答本题的关键是明确解无理方程的方法.
21、
【解析】
根据一次函数的性质,k>0时,y随x的增大而增大;k<0时,y随x的增大而减小,从而得出答案.
【详解】
一次函数y=x+1,,y随x的增大而减小
∵x1<x2
∴y1>y2
故答案为:>
本题考查了一次函数的增减性,熟练掌握相关知识点是解题关键.
22、14
【解析】
根据两直角边乘积的一半表示出面积,把已知面积代入求出ab的值,利用勾股定理得到a2+b2=,将代数式a3b+ab3变形,把a+b与ab的值代入计算即可求出值.
【详解】
解:∵的面积为
∴=
解得=2
根据勾股定理得:==7
则代数式==2×7=14
故答案为:14
本题主要考查了三角形的面积公式、勾股定理、因式分解等知识点,把要求的式子因式分解,再通过面积公式和勾股定理等量代换是解题的关键.
23、
【解析】
先用勾股定理求出OB的距离,然后用配方法即可求出最小值.
【详解】
∵点 B 的坐标是3m, 4m 4,O是原点,
∴OB=,
∵,
∴OB,
∴OB的最小值是,
故答案为.
本题考查勾股定理求两点间距离,其中用配方法求出最小值是本题的重难点.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
试题分析:欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直即可.
证明:∵DE∥BC,EC∥AB,
∴四边形DBCE是平行四边形.
∴EC∥DB,且EC=DB.
在Rt△ABC中,CD为AB边上的中线,
∴AD=DB=CD.
∴EC=AD.
∴四边形ADCE是平行四边形.
∴ED∥BC.
∴∠AOD=∠ACB.
∵∠ACB=90°,
∴∠AOD=∠ACB=90°.
∴平行四边形ADCE是菱形.
25、(1)见解析;(2).
【解析】
(1)根据三角形的中位线定理即可证明;
(2)根据菱形的面积公式即可求解.
【详解】
(1)∵四边形是矩形,
∴,
又∵点、、分别为、、的中点,
∴,,且,
同理,,
故,
∴四边形为菱形;
(2)连接、,则,且,
,且,
由(1)知,四边形为菱形,
故.
此题主要考查菱形的判定与面积求解,解题的关键是熟知菱形的判定定理.
26、(1)y(x>0);(2)答案见解析;(3)8.
【解析】
(1)根据平行四边形的面积公式,列出函数关系式即可;
(2)利用描点法画出函数图象即可;
(3)如图作DE⊥BC交BC的延长线于E.解直角三角形求出CD即可.
【详解】
(1)由题意,xy=18,
所以y(x>0);
(2)列表如下:
函数图象如图所示:
(3)如图作DE⊥BC交BC的延长线于E,
∵BC=4,∴DE,
∵BD,∴BE6,
∴EC=2,∴CD,
∴此平行四边形的周长=8.
本题考查了反比例函数的性质、平行四边形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
平均数
92
98
98
91
方差
1
1.2
0.9
1.8
沼气池
修建费用(万元/个)
可供使用户数(户/个)
占地面积(m2/个)
A型
3
20
48
B型
2
3
6
1
2
3
1
(1,2)
(1,3)
2
(2,1)
(2,3)
3
(3,1)
(3,2)
相关试卷
这是一份河北省邯郸市丛台区育华中学2024-2025学年九年级数学第一学期开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届重庆清化中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年上海市文来中学数学九年级第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。