|试卷下载
终身会员
搜索
    上传资料 赚现金
    辽宁省抚顺市抚顺县2025届九上数学开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    辽宁省抚顺市抚顺县2025届九上数学开学学业质量监测模拟试题【含答案】01
    辽宁省抚顺市抚顺县2025届九上数学开学学业质量监测模拟试题【含答案】02
    辽宁省抚顺市抚顺县2025届九上数学开学学业质量监测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省抚顺市抚顺县2025届九上数学开学学业质量监测模拟试题【含答案】

    展开
    这是一份辽宁省抚顺市抚顺县2025届九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在下列各式由左到右的变形中,不是因式分解的是( )
    A.B.
    C.D.
    2、(4分)一次函数的图象不经过哪个象限( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    3、(4分) 观察下列四个平面图形,其中是中心对称图形的个数是( )
    A.1个B.2个C.3个D.4个
    4、(4分)已知ABCD中,∠A+∠C=200°,则∠B的度数是( )
    A.100°B.160°C.80°D.60°
    5、(4分)如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为( )
    A.23B.24C.25D.无答案
    6、(4分)如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()
    A.B.C.D.
    7、(4分)已知点,、,是直线上的两点,下列判断中正确的是( )
    A.B.C.当时,D.当时,
    8、(4分)已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( )
    A.2cmB.4cmC.6cmD.8cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.
    10、(4分)若式子有意义,则x的取值范围是_____.
    11、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
    12、(4分)方程在实数范围内的解是_____.
    13、(4分)若点与点关于原点对称,则_______________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评.A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:
    表1 演讲答辩得分表(单位:分)
    表2 民主测评票数统计表(单位:张)
    规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;
    民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;
    综合得分=演讲答辩得分×(1﹣a)+民主测评得分×a(0.5≤a≤0.8).
    (1)当a=0.6时,甲的综合得分是多少?
    (2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
    15、(8分)商场代售某品牌手机,原来每台的售价是3000元,一段时间后为了清库存,连续两次降价出售,现在的售价是1920元,求两次降价的平均降价率是多少?
    16、(8分)如图,,是上的一点,且,.
    求证:≌
    17、(10分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:
    (1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);
    (2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.
    18、(10分)已知关于的一元二次方程,
    (1) 求证:无论m为何值,方程总有两个不相等的实数根;
    (2) 当m为何值时,该方程两个根的倒数之和等于1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知正n边形的每一个内角为150°,则n=_____.
    20、(4分)当x_____时,分式有意义.
    21、(4分)如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.
    22、(4分)解关于x的方程产生增根,则常数m的值等于________.
    23、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=24,BD=10,若点E是BC边的中点,则OE的长是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
    (1)在图1中,连接,且
    ①求证:与互相平分;
    ②求证:;
    (2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.
    (3)在图3中,当,,时,求之长.
    25、(10分)如图,在四边形ABCD中,AB∥CD,AC.BD相交于点O,且O是BD的中点
    (1)求证:四边形ABCD是平行四边形;
    (2)若,,求四边形ABCD的周长.
    26、(12分)直线是同一平面内的一组平行线.
    (1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;
    (2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.
    ①求证:;
    ②设正方形的面积为,求证.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
    【详解】
    解:A、是因式分解,故A不符合题意;
    B、是整式的乘法,故B符合题意;
    C、是因式分解,故C不符合题意;
    D、是因式分解,故D不符合题意;
    故选:B.
    本题考查了因式分解的意义.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.
    2、A
    【解析】
    根据一次函数的性质一次项系数小于0,则函数一定经过二,四象限,常数项-1<0,则一定与y轴负半轴相交,据此即可判断.
    【详解】
    解:∵k=-1<0,b=-1<0
    ∴一次函数的图象经过二、三、四象限
    一定不经过第一象限.
    故选:A.
    本题主要考查了一次函数的性质,对性质的理解一定要结合图象记忆.
    3、C
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    第一个,是中心对称图形,故选项正确;
    第二个,是中心对称图形,故选项正确;
    第三个,不是中心对称图形,故选项错误;
    第四个,是中心对称图形,故选项正确.
    故选C.
    本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、C
    【解析】
    试题分析:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC.
    ∵∠A+∠C=200°,∴∠A=100°.
    ∴∠B=180°﹣∠A=80°.故选C.
    5、B
    【解析】
    根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,1mn即四个直角三角形的面积和,从而不难求得(m+n)1.
    【详解】
    (m+n)1=m1+n1+1mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=14.
    故选B.
    本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.
    6、D
    【解析】
    根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
    【详解】
    ∵四边形ABCD是菱形,
    ∴CO=AC=3,BO=BD=,AO⊥BO,
    ∴.
    ∴.
    又∵,
    ∴BC·AE=24,
    即.
    故选D.
    点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
    7、D
    【解析】
    根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.
    【详解】
    解:一次函数上的点随的增大而减小,
    又点,、,是直线上的两点,
    若,则,
    故选:.
    本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.
    8、B
    【解析】
    试题分析: 由题意可知,在直角三角形中,30°角所对的直角边等于斜边的一般,所以斜边=2×2=4cm.
    考点:含30°的直角三角形的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
    故答案为.
    本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
    10、x≥﹣2且x≠1.
    【解析】
    由知,
    ∴,
    又∵在分母上,
    ∴.故答案为且.
    11、3.
    【解析】
    运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
    【详解】
    解:∵等腰直角三角形ABC,等腰直角三角形CDE
    ∴∠ECD=45°,∠ACB=45°
    即AC⊥EC,且CE∥BF
    当AG⊥BF,时AG最小,
    所以由∵AF=AE
    ∴AG=CG=AC=3
    故答案为3
    本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
    12、
    【解析】
    由x3+8=0,得x3=-8,所以x=-1.
    【详解】
    由x3+8=0,得
    x3=-8,
    x=-1,
    故答案为:x=-1.
    本题考查了立方根,正确理解立方根的意义是解题的关键.
    13、
    【解析】
    直接利用关于原点对称点的性质得出a,b的值.
    【详解】
    解:∵点A(a,1)与点B(−3,b)关于原点对称,
    ∴a=3,b=−1,
    ∴ab=3-1=.
    故答案为:.
    此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的关系是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)89分(2)当0.5≤a<0.75时,甲的综合得分高,0.75<a≤0.8时,乙的综合得分高
    【解析】
    (1)由题意可知:分别计算出甲的演讲答辩得分以及甲的民主测评得分,再将a=0.6代入公式计算可以求得甲的综合得分;
    (2)同(1)一样先计算出乙的演讲答辩得分以及乙的民主测评得分,则乙的综合得分=89(1−a)+88a,甲的综合得分=92(1−a)+87a,再分别比较甲、乙的综合得分,甲的综合得分高时即当甲的综合得分>乙的综合得分时,可以求得a的取值范围;同理甲的综合得分高时即当甲的综合得分<乙的综合得分时,可以求得a的取值范围.
    【详解】
    (1)甲的演讲答辩得分==92(分),
    甲的民主测评得分=40×2+7×1+3×0=87(分),
    当a=0.6时,甲的综合得分=92×(1−0.6)+87×0.6=36.8+52.2=89(分);
    答:当a=0.6时,甲的综合得分是89分;
    (2)∵乙的演讲答辩得分==89(分),
    乙的民主测评得分=42×2+4×1+4×0=88(分),
    ∴乙的综合得分为:89(1−a)+88a,甲的综合得分为:92(1−a)+87a,
    当92(1−a)+87a>89(1−a)+88a时,即有a<,
    又0.5≤a≤0.8,
    ∴0.5≤a<0.75时,甲的综合得分高;
    当92(1−a)+87a<89(1−a)+88a时,即有a>,
    又0.5≤a≤0.8,
    ∴0.75<a≤0.8时,乙的综合得分高.
    答:当0.5≤a<0.75时,甲的综合得分高,0.75<a≤0.8时,乙的综合得分高.
    本题考查的是平均数的求法.同时还考查了解不等式,本题求a的范围时要注意“0.5≤a≤0.8”这个条件.
    15、20%
    【解析】
    设平均每次降价率为x,那么原价格×(1-x)2=两次降价后的现价,把相应数值代入即可求解.
    【详解】
    解:设平均每次降价率为x,依题意得:

    解得:,(不合题意舍去),
    答:平均每次的降价率为20%.
    本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
    16、证明见解析.
    【解析】
    此题比较简单,根据已知条件,利用直角三角形的HL可以证明题目结论.
    【详解】
    证明:∵∠1=∠2
    ∴DE=CE
    ∵∠A=∠B=90°
    ∴AE=BC
    ∴Rt△ADE≌Rt△BEC(HL)
    此题考查直角三角形全等的判定,解题关键在于掌握判定定理
    17、(1); (2)22.1
    【解析】
    (1)使用待定系数法列出方程组求解即可.
    (2)把x=12代入(1)中的函数关系式,就可求解.
    【详解】
    (1)设函数关系式为y=kx+b,根据题意得

    解得
    ∴y与x之间的函数关系式为y=1.1x+4.1.
    (2)当x=12时,y=1.1×12+4.1=22.1.
    ∴桌面上12个整齐叠放的饭碗的高度是22.1cm.
    本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.
    18、(2)见解析 (2)
    【解析】
    (2)根据方程的系数结合根的判别式,可得出△=2m2+4>0,进而即可证出:方程总有两个不相等的实数根;
    (2)利用根与系数的关系列式求得m的值即可.
    【详解】
    证明:△=(m+2)2-4×2×(m-2)=m2+2.
    ∵m2≥0,
    ∴m2+2>0,即△>0,
    ∴方程总有两个不相等的实数根.
    (2)设方程的两根为a、b,
    利用根与系数的关系得:a+b=-m-2,ab=m-2
    根据题意得:=2,
    即:=2
    解得:m=-,
    ∴当m=-时该方程两个根的倒数之和等于2.
    本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    试题解析:由题意可得:
    解得
    故多边形是1边形.
    故答案为1.
    20、≠.
    【解析】
    要使分式有意义,分式的分母不能为1.
    【详解】
    因为4x+5≠1,所以x≠-.
    故答案为≠−.
    解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.
    21、,
    【解析】
    根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.
    【详解】
    正△的边长,
    正△的面积,
    点、、分别为△的三边中点,
    ,,,
    △△,相似比为,
    △与△的面积比为,
    正△的面积为,
    则第个正△的面积为,
    故答案为:;.
    本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    22、
    【解析】
    先通过去分母,将分式方程化为整式方程,再根据增根的定义得出x的值,然后将其代入整式方程即可.
    【详解】
    两边同乘以得,
    由增根的定义得,
    将代入得,
    故答案为:.
    本题考查了解分式方程、增根的定义,掌握理解增根的定义是解题关键.
    23、6.1.
    【解析】
    根据菱形的性质:对角线互相垂直,利用勾股定理求出BC,再利用直角三角形斜边的中线的性质OE=BC,即可求出OE的长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=AC=12,OD=BD=1,
    在Rt△BOC中,BC==13,
    ∵点E是BC边的中点,
    ∴OE=BC=6.1,
    故答案为:6.1.
    此题主要考查了菱形的性质、勾股定理的运用以及直角三角形斜边上的中线等于斜边的一半等知识,得出EO=BC是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①详见解析;②详见解析;(1)当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,理由详见解析;(3)
    【解析】
    (1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;
    (1)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;
    (3)过P作PE⊥PD,过B作BELPE于E,根据(1)的结论求出PE,结合图形解答.
    【详解】
    (1)证明:①连接ED、BF,
    ∵BE∥DF,BE=DF,
    ∴四边形BEDF是平行四边形,
    ∴BD、EF互相平分;
    ②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.
    ∵EF⊥BE,
    ∴∠BEF=90°.
    在Rt△BEO中,BE1+OE1=OB1.
    ∴(BE+DF)1+EF1=(1BE)1+(1OE)1=4(BE1+OE1)=4OB1=(1OB)1=BD1.
    在正方形ABCD中,AB=AD,BD1=AB1+AD1=1AB1.
    ∴(BE+DF)1+EF1=1AB1;
    (1)解:当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,
    理由如下:如图1,过D作DM⊥BE交BE的延长线于M,连接BD.
    ∵BE∥DF,EF⊥BE,
    ∴EF⊥DF,
    ∴四边形EFDM是矩形,
    ∴EM=DF,DM=EF,∠BMD=90°,
    在Rt△BDM中,BM1+DM1=BD1,
    ∴(BE+EM)1+DM1=BD1.
    即(BE+DF)1+EF1=1AB1;
    (3)解:过P作PE⊥PD,过B作BE⊥PE于E,
    则由上述结论知,(BE+PD)1+PE1=1AB1.
    ∵∠DPB=135°,
    ∴∠BPE=45°,
    ∴∠PBE=45°,
    ∴BE=PE.
    ∴△PBE是等腰直角三角形,
    ∴BP=BE,
    ∵BP+1PD=4 ,
    ∴1BE+1PD=4,即BE+PD=1,
    ∵AB=4,
    ∴(1)1+PE1=1×41,
    解得,PE=1,
    ∴BE=1,
    ∴PD=1﹣1.
    本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.
    25、 (1)详见解析;(2)32
    【解析】
    (1)利用全等三角形的性质证明即可解决问题.
    (2)证明四边形ABCD是菱形,即可求四边形ABCD的周长.
    【详解】
    解:(1)证明:,

    ,,


    又,
    ∴四边形ABCD是平行四边形.
    (2)∵四边形ABCD是平行四边形,,
    ∴四边形ABCD是菱形,
    ∴四边形ABCD的周长.
    本题考查平行四边形的判定和性质,菱形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    26、(1)9或5;(2)①见解析,②见解析
    【解析】
    (1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;
    ②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;
    (2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;
    ②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.
    【详解】
    解:(1)①如图,当点分别在上时,面积为:;
    ②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=90°,
    ∴∠ABE+∠CBF=180°-90°=90°,
    ∵∠CBF+∠BCF=90°,
    ∴∠ABE=∠BCF,
    在△ABE和△BCF中

    ∴△ABE≌△BCF(AAS),
    ∴AE=BF=2,
    ∴AB=,
    ∴正方形ABCD的面积=AB2=5;
    综上所述,正方形ABCD的面积为9或5;
    (2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=90°,
    ∴∠ABE+∠CBF=180°-90°=90°,
    ∵∠CBF+∠BCF=90°,
    ∴∠ABE=∠BCF,
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(AAS),
    ∴AE=BF,
    同理△CDM≌△BCF(AAS),
    ∴△ABE≌△CDM(AAS),
    ∴BE=DM,
    即h1=h2.
    ②解:由①得:AE=BF=h2+h2=h2+h1,
    ∵正方形ABCD的面积:S=AB2=AE2+BE2,
    ∴S=(h2+h1)2+h12=2h12+2h1h2+h3.
    本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.
    题号





    总分
    得分
    A
    B
    C
    D
    E

    90
    92
    94
    95
    88

    89
    86
    87
    94
    91
    “好”票数
    “较好”票数
    “一般”票数

    40
    7
    3

    42
    4
    4
    相关试卷

    2025届辽宁省抚顺县数学九上开学质量检测模拟试题【含答案】: 这是一份2025届辽宁省抚顺县数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map