辽宁省锦州市新海新区实验学校2025届九上数学开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果,那么( )
A.a≥﹣2B.﹣2≤a≤3
C.a≥3D.a为一切实数
2、(4分)下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.错误的个数为( )
A.1 B.2 C.3 D.4
3、(4分)已知平行四边形,下列条件中,不能判定这个平行四边形为菱形的是( )
A.B.C.平分D.
4、(4分)如图,在Rt△ABC中,∠ACB =90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°<<180°)至△A′B′C,使得点A′恰好落在AB边上,则等于( ).
A.150°B.90°
C.60°D.30°
5、(4分)下列式子中一定是二次根式的是( )
A.B.C.D.
6、(4分)在下列汽车标志中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
7、(4分)如图,是上一点,交于点,,,若,,则的长是( )
A.0.5B.1C.1.5D.2
8、(4分)如图,若一次函数与的交点坐标为,则的解集为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.
10、(4分)分式方程有增根,则的值为__________。
11、(4分)已知,化简________
12、(4分)如果将直线平移,使其经过点,那么平移后所得直线的表达式是__________.
13、(4分)一次函数的图象不经过第_______象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC 中,AB=AC,∠BAC=120°,E 为 BC 上一点,以 CE 为直径作⊙O 恰好经过 A、C 两点, PF⊥BC 交 BC 于点 G,交 AC 于点 F.
(1)求证:AB 是⊙O 的切线;
(2)如果 CF =2,CP =3,求⊙O 的直径 EC.
15、(8分)如图,已知互余,∠2与∠3互补,.求的度数.
16、(8分)利用幂的运算性质计算:
17、(10分)某次世界魔方大赛吸引世界各地共900名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到30个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,
(1)填空:A区域3×3阶魔方爱好者进入下一轮角逐的有______人.
(2)填空:若A区域30名爱好者完成时间为9秒的人数是7秒人数的3倍,
①a=______,b=______;
②完成时间的平均数是______秒,中位数是______秒,众数是______秒.
(3)若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的约有多少人?
18、(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)画出把△ABC向下平移4个单位后的图形.
(2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.
(3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.
20、(4分)如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“_____”.
21、(4分)化简;÷(﹣1)=______.
22、(4分)抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160 cm和165 cm之间的学生大约有_______人.
23、(4分)如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,点的坐标为,点在轴的正半轴上.若点,在线段上,且为某个一边与轴平行的矩形的对角线,则称这个矩形为点、的“涵矩形”.下图为点,的“涵矩形”的示意图.
(1)点的坐标为.
①若点的横坐标为,点与点重合,则点、的“涵矩形”的周长为__________.
②若点,的“涵矩形”的周长为,点的坐标为,则点,,中,能够成为点、的“涵矩形”的顶点的是_________.
(2)四边形是点、的“涵矩形”,点在的内部,且它是正方形.
①当正方形的周长为,点的横坐标为时,求点的坐标.
②当正方形的对角线长度为时,连结.直接写出线段的取值范围.
25、(10分)下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:
(1)体育场离张强家的多远?张强从家到体育场用了多长时间?
(2)体育场离文具店多远?
(3)张强在文具店逗留了多久?
(4)计算张强从文具店回家的平均速度.
26、(12分)2019年5月区教育局在全区中小学开展了“情系新疆书香援疆”捐书活动.某学校学生社团对部分学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:
(1)统计表中的_____________,_____________,_____________,_____________;
(2)科普图书在扇形统计图中的圆心角是_____________°;
(3)若该校共捐书1500本,请估算“科普图书”和“小说”一共多少本.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接利用二次根式有意义的条件得出关于不等式组,解不等式组进而得到的取值范围.
【详解】
解:∵
∴
解得:
故选:C
本题考查了二次根式有意义的条件以及解不等式组等知识点,能根据已知条件得到关于的不等式组是解题的关键.
2、D
【解析】【分析】根据立方根和平方根的知识点进行解答,正数的平方根有两个,1的平方根只有一个,任何实数都有立方根,则非负数才有平方根,一个数的立方根与原数的性质符号相同,据此进行答题.
【详解】①1的平方根只有一个,故任何数的平方根都有两个结论错误;
②负数有立方根,但是没有平方根,故如果一个数有立方根,那么它一定有平方根结论错误;
③算术平方根还可能是1,故算术平方根一定是正数结论错误;
④非负数的立方根一定是非负数,故非负数的立方根不一定是非负数,
错误的结论①②③④,
故选D.
【点睛】本题主要考查立方根、平方根和算术平方根的知识点,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.
3、A
【解析】
菱形的判定有以下三种:①一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.
【详解】
解:A、由平行四边形的性质可得AB=CD,所以由AB=CD不能判定平行四边形ABCD是菱形,故A选项符合题意;
B、一组邻边相等的平行四边形是菱形,故B选项不符合题意.
C、由一条对角线平分一角,可得出一组邻边相等,也能判定为菱形,故C选项不符合题意;
D、对角线互相垂直的平行四边形是菱形,故D选项不符合题意;
故选:A.
本题考查菱形的判定方法,熟记相关判定即可正确解答.
4、C
【解析】
由在Rt△ABC中,∠ACB=90°,∠ABC=30°,可求得∠A的度数,又由将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,易得△ACA′是等边三角形,继而求得答案.
【详解】
∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,
∴∠A=90°−∠ABC=60°,
∵将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,
∴AC=A′C,
∴△ACA′是等边三角形,
∴α=∠ACA′=60°.
故选C.
本题考查了旋转的性质及等边三角形的性质,熟练掌握性质定理是解题的关键.
5、A
【解析】
一般地,我们把形如(a≥0)的式子叫做二次根式,据此进行判断即可.
【详解】
A. ,是二次根式;
B. 中,根指数为3,故不是二次根式;
C. 中,-2<0,故不是二次根式;
D. 中,x不一定是非负数,故不是二次根式;
故选A.
本题主要考查了二次根式的定义,解决问题的关键是理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.
6、A
【解析】
根据中心对称图形和轴对称图形的概念逐一进行分析即可.
【详解】
A、是中心对称图形,也是轴对称图形,故符合题意;
B、不是中心对称图形,是轴对称图形,故不符合题意;
C、不是中心对称图形,是轴对称图形,故不符合题意;
D、不是中心对称图形,是轴对称图形,故不符合题意,
故选A.
本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
7、B
【解析】
根据平行线的性质,得出,,根据全等三角形的判定,得出,根据全等三角形的性质,得出,根据,,即可求线段的长.
【详解】
∵,
∴,,
在和中,
∴,
∴,
∵,
∴.
故选:B.
本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定是解此题的关键.
8、A
【解析】
根据两函数图象的上下位置关系结合交点的横坐标,即可得出不等式的解集.
【详解】
解:观察函数图象,可知:当x<3时,直线在直线的下方,
∴不等式的解集为.
故选:A.
本题考查了一次函数与一元一次不等式以及在数轴上表示不等式的解集,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据旋转的性质求出点的坐标即可.
【详解】
如图,将点B绕点(坐标原点)按逆时针方向旋转后,得到点
点的坐标为
故答案为:.
本题考查了坐标点的旋转问题,掌握旋转的性质是解题的关键.
10、3
【解析】
方程两边都乘以最简公分母(x-1)(x+1)把分式方程化为整式方程,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行计算即可得解.
【详解】
解:∵分式方程有增根,
∴x-1=0,x+1=0,
∴x1=1,x1=-1.
两边同时乘以(x-1)(x+1),原方程可化为x(x+1)-(x-1)(x+1)=m,
整理得,m=x+1,
当x=1时,m=1+1=3,
当x=-1时,m=-1+1=0,
当m=0时,方程为=0,
此时1=0,
即方程无解,
∴m=3时,分式方程有增根,
故答案为:m=3.
本题考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解题关键.
11、
【解析】
根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.
【详解】
∵a<0<b,
∴|a−b|=b−a.
故答案为:.
本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.
12、
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=x+b,然后将点(0,2)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=x+b,把(0,2)代入直线解析式得解得 b=2,
所以平移后直线的解析式为.
本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
13、三
【解析】
根据一次函数的性质,k<0,过二、四象限,b>0,与y轴交于正半轴,综合来看即可得到结论.
【详解】
因为解析式中,-5<0,3>0,图象过一、二、四象限,故图象不经过第三象限.
故答案为:第三象限.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)⊙O 的直径EC= 1.
【解析】
(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
(2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.
【详解】
证明:(1)连接AO,
∵AB=AC,∠BAC=120°,
∴∠B=∠ACB=10°,
∵AO=CO,
∴∠0AC=∠OCA=10°,
∴∠BAO=120°-10°=90°,
∵OA 是半径
∴AB 是⊙O 的切线;
(2)解:连接OP,
∵PF⊥BC,∴∠FGC=∠EGP=90°,
∵CF=2,∠FCG=10°,∴FG=1,
∴在Rt△FGC 中CG=
∵CP=1.∴Rt△GPC 中,PG=
设OG=x,则OC=x+,连接OP,,显然OP=OC=x+
在 Rt△OPG 中,由勾股定理知
即(x+)2=x2+()2∴x .
∴⊙O 的直径EC=EG+CG=2x++=1.
故答案为:(1)见解析;(2)⊙O 的直径EC= 1.
本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.
15、130°
【解析】
先根据∠2与∠3互补,∠3=140°,得出AB∥CD,∠2=40°,再根据∠1和∠2互余,得到∠1的度数,最后根据平行线的性质,即可得到∠4的度数.
【详解】
∵∠2与∠3互补,∠3=140°,
∴AB∥CD,∠2=180°-140°=40°,
又∵∠1和∠2互余,
∴∠1=90°-40°=50°,
∵AB∥CD,
∴∠4=180°-∠1=180°-50°=130°.
本题主要考查了平行线的性质与判定以及余角和补角计算的应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
16、4
【解析】
运用幂的运算法则进行运算即可
【详解】
本题考查幂的运算,熟练掌握幂的运算规则是集体关键
17、(1)4;(2)①1,9;②8.8,9,10;(3)估计在3×3阶魔方赛后进入下一轮角逐的约有120人.
【解析】
(1)由图知1人6秒,3人1秒,小于8秒的爱好者共有4人;
(2)①根据A区域30名爱好者完成时间为9秒的人数是1秒人数的3倍,可得b=3×3=9,再用数据总数30减去其余各组人数得出a的值;②利用加权平均数的计算公式列式计算求出平均数,再根据中位数、众数的定义求解;
(3)先求出样本中进入下一轮角逐的百分比,再乘以900即可.
【详解】
解:(1)A区域3×3阶魔方爱好者进入下一轮角逐的有1+3=4(人).
故答案为4;
(2)①由题意,可得b=3×3=9,
则a=30-4-9-10=1.
故答案为1,9;
②完成时间的平均数是:=8.8(秒);
按从小到大的顺序排列后,第15、16个数据都是9,所以中位数是=9(秒);
数据10秒出现了10次,此时最多,所以众数是10秒.
故答案为8.8,9,10;
(3)900×=120(人).
答:估计在3×3阶魔方赛后进入下一轮角逐的约有120人.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了平均数、中位数、众数的意义以及利用样本估计总体.
18、 (1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)首先确定A、B、C三点绕坐标原点O逆时针旋转90°后的对应点位置,再连接即可;
(3)结合图形可得D点位置有三处,分别以AB、AC、BC为对角线确定位置即可.
【详解】
(1)如图所示,△即为所求作;
(2)如图所示,△DEF即为所求作;
(3)D1(3,3)、D2(-7,3)、D3(-5,-3).
此题主要考查了作图--旋转变换,关键是正确确定A、B、C三点旋转后的位置.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
【详解】
解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;
甲车10:00到达B城,乙车9:00到达B城;
乙车的平均速度为:300÷(9-6)=100(km/h),
当乙车7:30时,乙车离A的距离为:100×1.5=150(km),
∴点A(7.5,150),
由图可知点B(5,0),
设甲的函数解析式为:y=kt+b,
把点A(7.5,150),B(5,0)代入y=kt+b得:
,
解得:,
∴甲的函数解析式为:y=1t-300,
当t=9时,y=1×9-300=240,
∴9点时,甲距离开A的距离为240km,
∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
故答案为:1.
本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.
20、HL
【解析】
分析: 需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.
详解: ∵BE、CD是△ABC的高,
∴∠CDB=∠BEC=90°,
在Rt△BCD和Rt△CBE中,
BD=EC,BC=CB,
∴Rt△BCD≌Rt△CBE(HL),
故答案为HL.
点睛: 本题考查全等三角形判定定理中的判定直角三角形全等的HL定理.
21、-
【解析】
直接利用分式的混合运算法则即可得出.
【详解】
原式,
,
,
.
故答案为.
此题主要考查了分式的化简,正确掌握运算法则是解题关键.
22、1
【解析】
根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数
【详解】
解:由题意可知:150名样本中160~165的人数为30人,则其频率为,
则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.
故答案为1.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.
23、
【解析】
过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.
【详解】
如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,
又,
,
∽,
又是AB的中点,,
,
设,则,,
,,
,
反比例函数的图象经过点C和AB的中点D,
,
解得,
,
又,
,
,
故答案为.
本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
二、解答题(本大题共3个小题,共30分)
24、(1)①. ②;(2)①点的坐标为或.②.
【解析】
(1)①利用A、B的坐标求出直线AB的解析式,再将P点横坐标代入,计算即可得点、的“新矩形”的周长;②由直线AB的解析式判定是否经过E、F、G三点,发现只经过了F(1,2),能够成为点、的“涵矩形”的顶点的是F(1,2)
(2)①①根据正方形的性质可得出∠ABO=45°,结合点A的坐标可得出点B的坐标及直线AB的函数表达式,由的横坐标为,可得出点P的坐标,再由正方形的周长可得出点Q的坐标,进而可得出点Q的坐标;②由正方形的对角线长度为,可得正方形的边长为1,由直线AB的解析式y=-x+6可知M点的运动轨迹是直线y=-x+5,由点在的内部,x的取值范围是0
(1)①解:由A(0,6),B(3,0)可得直线AB的解析式为:y=-2x+6,
∵P点横坐标是
∴当x=时,y=3
∴P(,3).
∵ 点与点重合,
∴Q(3,0)
∴点、的“涵矩形”的宽为:3-=,长为3-0=3
∴点、的“涵矩形”的周长为:
故答案为9
②.由①可得直线AB的解析式为:y=-2x+6可设Q(a,-2a+6),则成为点、的“涵矩形”的顶点且在AOB内部的一点坐标为M(1,-2a+6)
∴PM=4-(-2a+6)=2a-2,MQ=a-1
∵点,的“涵矩形”的周长为
∴PM+MQ=3
∴2a-2+a-1=3
解得:a=2
∴M(1,2)
故答案为F(1,2),只写或也可以.
(2)①点、的“涵矩形”是正方形,
,
点的坐标为,
点的坐标为 ,
直线的函数表达式为.
点的横坐标为,
点的坐标为.
正方形的周长为,
点的横坐标为或,
点的坐标为或.
②∵正方形的对角线长度为,
∴可得正方形的边长为1,
因为直线AB的解析式y=-x+6可设M点的运动轨迹是直线y=-x+b,且过(0,5)
故M点的运动轨迹是直线y=-x+5
∵点在的内部,x的取值范围是0
∴OM<5,
当OM⊥直线y=-x+5时,OM取得最小值,此时OM= ,
∴OM的取值范围..
故答案为
本题考查了新型定义题型,矩形、正方形、一次函数、线段最值等问题,难度较高,审清题意,会综合运用矩形、正方形、一次函数以及最值的求法,是解题的关键.
25、(1)体育场离张强家2.5km,张强从家到体育场用了15min;(2)体育场离文具店1km;(3) 张强在文具店逗留了20min;(4)张强从文具店回家的平均速度为km/min
【解析】
(1)根据张强锻炼时时间增加,路程没有增加,表现在函数图象上就出现第一次与x轴平行的图象;
(2)由图中可以看出,体育场离张强家2.5千米,文具店离张强家1.5千米,得出体育场离文具店距离即可;
(3)张强在文具店逗留,第二次出现时间增加,路程没有增加,时间为:65-1.
(4)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.
【详解】
解:(1)从图象上看,体育场离张强家2.5km,张强从家到体育场用了15min.
(2)2.5-1.5=1(km),
所以体育场离文具店1km.
(3)65-1=20(min),
所以张强在文具店逗留了20min.
(4)1.5÷(100-65)= (km/min),
张强从文具店回家的平均速度为km/min.
此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键,需注意理解时间增多,路程没有变化的函数图象是与x轴平行的一条线段.
26、(1),,,;(2);(3)
【解析】
(1)根据频率=频数÷总数分别求解可得;
(2)圆心角=频数×360°可得;
(3)用总人数乘以样本中科普图书和小说的频率之和可得;
【详解】
(1)先求出总数=500,a==0.35,b=500×0.3=150,c==0.22,d==0.13
所以,,,;
(2)360×0.3=
(3)(本)
本题考查了列表法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.
题号
一
二
三
四
五
总分
得分
辽宁省锦州市滨海新区实验学校2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】: 这是一份辽宁省锦州市滨海新区实验学校2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省大连高新区名校联盟2024年九上数学开学检测模拟试题【含答案】: 这是一份辽宁省大连高新区名校联盟2024年九上数学开学检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。