辽宁省兴城市红崖子满族乡初级中学2024-2025学年九上数学开学联考试题【含答案】
展开这是一份辽宁省兴城市红崖子满族乡初级中学2024-2025学年九上数学开学联考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,分别以点A,C为圆心,大于长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若,,则的周长是( )
A.7B.8C.9D.10
2、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
3、(4分)由线段a,b,c可以组成直角三角形的是( )
A.a=5,b=8,c=7B.a=2,b=3,c=4
C.a=24,b=7,c=25D.a=5,b=5,c=6
4、(4分)在四边形 ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分AC,点 H 为垂足,设 AB=x,AD=y,则y 关于x 的函数关系用图象大致可以表示为 ( )
A.B.C.D.
5、(4分)若关于的一元二次方程的一个根是0,则的值是( )
A.1B.-1C.1或-1D.
6、(4分)如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为( )
A.πcm2B.4 cm2C.cm2D.cm2
7、(4分)天籁音乐行出售三种音乐,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售量的百分比,应该用( )
A.条形统计图B.扇形统计图C.折线统计图D.以上都可以
8、(4分)如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为( )
A.1cm2B.2cm2C.cm2D.cm2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若把分式中的x,y都扩大5倍,则分式的值____________.
10、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E. F分别是AO、AD的中点,若AC=8,则EF=___.
11、(4分)张老师公布班上6名同学的数学竞赛成绩时,有意公布了5个人的得分:78,92,61,85,75,又公布了6个人的平均分:80,还有一个未公布,这个未公布的得分是_____.
12、(4分)如图,中,,,,点D是AC上的任意一点,过点D作于点E,于点F,连接EF,则EF的最小值是_________.
13、(4分)不等式组的解集是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,是平行四边形,延长到,延长到,使,连接分别交、于点、,求证:
15、(8分)(1) [探索发现]正方形中,是对角线上的一个动点(与点不重合),过点作交线段于点.求证:
小玲想到的思路是:过点作于点于点,通过证明得到.请按小玲的思路写出证明过程
(2)[应用拓展]如图2,在的条件下,设正方形的边长为,过点作交于点.求的长.
16、(8分)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
已知.
(1)观察发现
如图①,若点是和的角平分线的交点,过点作分别交、于、,填空: 与、的数量关系是________________________________________.
(2)猜想论证
如图②,若点是外角和的角平分线的交点,其他条件不变,填: 与、的数量关系是_____________________________________.
(3)类比探究
如图③,若点是和外角的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.
17、(10分)甲、乙两位同学参加数学竞赛辅导,三项培训内容的考试成绩如下表,现要选拔一人参赛.
(1)若按三项考试成绩的平均分选拔,应选谁参赛;
(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.
18、(10分)如图,在平行四边形ABCD中,AC是它的一条对角线,BE⊥AC于点E,DF⊥AC于点F,求证:四边形BEDF是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为_____.
20、(4分)如图,中,,,,是内部的任意一点,连接,,,则的最小值为__.
21、(4分)x的3倍与4的差是负数,用不等式表示为______.
22、(4分)如图,函数和的图象交于点,则不等式的解集是_____.
23、(4分)如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了_____ cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。根据这些材料,请你回答下列问题:
(1)在图①中,“7分”所在扇形的圆心角等于_______
(2)求图②中,“8分”的人数,并请你将该统计图补充完整。
(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?
(4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
25、(10分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.
(1)求证:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的长.
26、(12分)已知直线:与函数.
(1)直线经过定点,直接写出点的坐标:_______;
(2)当时,直线与函数的图象存在唯一的公共点,在图中画出的函数图象并直接写出满足的条件;
(3)如图,在平面直角坐标系中存在正方形,已知、.请认真思考函数的图象的特征,解决下列问题:
①当时,请直接写出函数的图象与正方形的边的交点坐标:_______;
②设正方形在函数的图象上方的部分的面积为,求出与的函数关系式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用基本作图得到MN垂直平分AC,如图,则DA=DC,然后利用等线段代换得到△ABD的周长=AB+BC.
【详解】
解:由作法得MN垂直平分AC,如图,
∴DA=DC,
∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=3+4=1.
故选:A.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
2、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、是轴对称图形,又是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选:C.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、C
【解析】
由勾股定理的逆定理,只要验证两条较短边的平方和是否等于最长边的平方即可.
【详解】
52+72≠82,故不是直角三角形,故选项A错误;
22+32≠42,故不是直角三角形,故选项B错误;
72+242=252,故是直角三角形,故选项C正确;
52+52≠62,故不是直角三角形,故选项D错误.
故选:C.
本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
4、D
【解析】
因为DH垂直平分AC,∴DA=DC,AH=HC=2,
∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,
∴∠DAN=∠BAC,∵∠DHA=∠B=90°,
∴△DAH∽△CAB,∴,
∴ ,∴y=,
∵AB
故选D.
5、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
6、B
【解析】
根据平移后阴影部分的面积恰好是长1cm,宽为1cm的矩形,再根据矩形的面积公式即可得出结论.
【详解】
解:∵平移后阴影部分的面积恰好是长为1cm,宽为1cm的矩形,
∴S阴影=1×1=4cm1.
故选B.
本题考查的是图形平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.
7、B
【解析】
扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目. 根据以上即可得出.
【详解】
根据题意,知,要求表示这三种唱片的销售量占总销售的百分比,结合统计图各自的特点,应选用扇形统计图.
故选B.
本题考查了统计图的选择,熟练掌握扇形统计图、折线统计图及条形统计图的特征是解题的关键.
8、D
【解析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.
【详解】
解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1= S1,
又S△ABO1=S矩形,∴S1=S矩形=5=;
设ABC2O2为平行四边形为S2,∴S△ABO2=S2,
又S△ABO2=S矩形,∴S2=S矩形==;
,…,
同理:设ABC5O5为平行四边形为S5,S5==.
故选:D.
此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、扩大5倍
【解析】
【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.
【详解】把分式中的x,y都扩大5倍得:
=,
即分式的值扩大5倍,
故答案为:扩大5倍.
【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.
10、2
【解析】
由矩形的性质可知:矩形的两条对角线相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF为△AOD的中位线,由此可求的EF的长.
【详解】
∵四边形ABCD为矩形,
∴BD=AC=8,
又∵矩形对角线的交点等分对角线,
∴OD=4,
又∵在△AOD中,EF为△AOD的中位线,
∴EF=2.
故答案为2.
此题考查三角形中位线定理,解题关键在于利用矩形的性质得到BD=AC=8
11、1.
【解析】
首先设这个未公布的得分是x,根据算术平均数公式可得关于x的方程,解方程即可求得答案.
【详解】
设这个未公布的得分是x,
则:,
解得:x=1,
故答案为:1.
本题考查了算术平均数,关键是掌握对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.
12、2.4
【解析】
连接BD,可证EF=BD,即将求EF最小值转化为求BD的最小值,根据“垂线段最短”可知时,BD取最小值,依据直角三角形面积求出BD即可.
【详解】
解:连接BD
四边形BEDF是矩形
当时,BD取最小值,
在中,,,根据勾股定理得AC=5,
所以EF的最小值等于BD的最小值为2.4.
故答案为2.4
本题主要考查了利用“垂线段最短”求线段的最小值,准确作出辅助线将求EF最小值转化为求BD最小值是解题的关键.求线段的最小值常用的理论依据为“两点之间线段最短”、“垂线段最短”.
13、x≤1
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
解不等式①得:x≤1,
解不等式②得:x<7,
∴不等式组的解集是x≤1,
故答案为:x≤1.
本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
由平行四边形的性质证出∠EBG=∠FDH,由ASA证△EBG≌△FDH,即可得出EG=FH.
【详解】
证明:四边形是平行四边形,
在和中,
考查了平行四边形的性质及全等三角形的判定.熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
15、(1)详见解析;(2)
【解析】
(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;
(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.
【详解】
证明:过点作于点,于点
是对角线上的动点
,
∠GPC+∠CPE= 90°
(2)连接BD,如图2.
∵四边形ABCD是正方形,
∴∠BOP=90°.
∵PE⊥PB即∠BPE=90°,
∴∠PBO=90°-∠BPO=∠EPF.
∵EF⊥PC即∠PFE=90°,
∴∠BOP=∠PFE.
在△BOP和△PFE中,
,
∴△BOP≌△PFE(AAS),
∴BO=PF.
∵四边形ABCD是正方形,
∴OB=OC,∠BOC=90°,
∴BC=OB.
∵BC=2,
∴OB=,
∴PF=.
本题主要考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质等知识,有一定的综合性,而通过添加辅助线证明三角形全等是解决本题的关键.
16、(1);(2);(3)不成立, ,证明详见解析.
【解析】
(1)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;
(2)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;
(3)根据平行线的性质与角平分线的定义得出 EF 与 BE 、 CF 的数量关系.
【详解】
(1)EF=BE+CF.
∵ 点 D 是 ∠ABC 和 ∠ACB 的角平分线的交点,
∴∠EBD=∠DBC , ∠FCD=∠DCB .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCB .
∴ ∠EDB=∠EBD , ∠FCD=∠FDC .
∴EB=ED , DF=CF .
∴EF=BE+CF .
故本题答案为: EF=BE+CF .
(2)EF=BE+CF.
∵D 点是外角 ∠CBE 和 ∠BCF 的角平分线的交点,
∴∠EBD=∠DBC , ∠FCD=∠DCB .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCB .
∴ ∠EDB=∠EBD , ∠FCD=∠FDC .
∴EB=ED , DF=CF .
∴EF=BE+CF .
故本题答案为: EF=BE+CF .
(3)不成立; EF=BE−CF ,证明详见解析.
∵ 点 D 是 ∠ABC 和外角 ∠ACM 的角平分线的交点,
∴∠EBD=∠DBC , ∠ACD=∠DCM .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCM .
∴∠EBD=∠EDB , ∠FDC=∠FCD .
∴BE=ED , FD=FC .
∵EF=ED−FD ,
∴EF=BE−CF .
本题考查了平行线的性质,等腰三角形的判定,以及角平分线的定义等知识.解决本题的关键突破口是掌握平行线的性质与等腰三角形的概念.
17、(1)选择甲;(2)选择乙.
【解析】
(1)分别求出甲、乙的算术平均数进行选择即可;
(2)分别求出甲、乙的加权平均数进行选择.
【详解】
解:(1),
∵
∴选择甲;
(2)
∵
∴选择乙.
故答案为(1)选择甲;(2)选择乙.
本题考查了算术平均数和加权平均数的求法.
18、见试题解析
【解析】
通过全等三角形(△ABE≌△CDF)的对应边相等推知BE=DF,由“一组对边平行且相等四边形是平行四边形“证得四边形BEDF是平行四边形.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=DC,且AB∥DC,
∴∠BAE=∠DCF.
又∵BE⊥AC,DF⊥AC,
∴∠AEB=∠CFD=90°.
在△ABE与△CDF中,
,
∴△ABE≌△CDF(AAS),
∴BE=DF;
∵BE⊥AC,DF⊥AC,
∴BE∥DF,
∴四边形BEDF是平行四边形.
考点: 平行四边形的判定与性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
首先证明OE=BC,再由AE+EO=4,推出AB+BC=8,然后计算周长即可解答.
【详解】
解:∵四边形ABCD是平行四边形,∴OA=OC,
∵AE=EB,∴OE=BC,
∵AE+EO=4,∴2AE+2EO=8,
∴AB+BC=8,
∴平行四边形ABCD的周长=2×8=1,
故答案为:1.
本题考查了平行四边形的性质、三角形中位线定理,熟练掌握是解题的关键.
20、.
【解析】
将绕着点逆时针旋转,得到,连接,,通过三角形全等得出三点共线长度最小,再利用勾股定理解答即可.
【详解】
如图,将绕着点逆时针旋转,得到,连接,,
,,,,,
是等边三角形
当点,点,点,点共线时,有最小值
,
故答案为:.
本题考查三点共线问题,正确画出辅助线是解题关键.
21、
【解析】
“x的3倍”即3x,“与4的差”可表示为,根据负数即“”可得不等式.
【详解】
x的3倍为“3x”, x的3倍与4的差为“3x-4”,
所以x的3倍与4的差是负数,用不等式表示为,
故答案为.
本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
22、
【解析】
观察图象,写出直线在直线的下方所对应的自变量的范围即可.
【详解】
解:观察图象得:当时,,
即不等式的解集为.
故答案为:.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的解集.
23、2.
【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.
【详解】
Rt△ACD中,AC=AB=4cm,CD=3cm;
根据勾股定理,得:AD==5cm;
∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;
故橡皮筋被拉长了2cm.
故答案为2.
此题主要考查了等腰三角形的性质以及勾股定理的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)144°;(2)3人,补图见解析;(3)8.3分,7分,乙校;(4)甲校.
【解析】
分析:(1)利用360°减去其它各组对应的圆心角即可求解;
(2)首先求得乙校参赛的人数,即可求得成绩是8分的人数,从而将条形统计图补充完整;
(3)首先求得得分是9分的人数,然后根据平均数公式和中位数的定义求解;
(4)只要比较每个学校前8名的成绩即可.
详解:(1)“7分”所在扇形的圆心角等于360°-90°-72°-54°=144°;
(2)乙校参赛的总人数是:4÷=20(人),
则成绩是8分的人数是:20-8-4-5=3(人).
;
(3)甲校中得分是9分的人数是:20-11-8=1(人).
则甲校的平均分是:=8.3(分),
甲校的中位数是:7分;
两校的平均数相同,但乙校的中位数大于甲校的中位数,说明乙校的成绩高于甲校的成绩.
(4)甲得分是10分的正好有8人,而乙班得分是10分的有5人,不足8人,则应选择甲校.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、(1)证明过程见解析;(2)8.
【解析】
(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;
(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.
【详解】
(1)∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD,
∴∠DAE=∠F,∠D=∠ECF, ∵E是▱ABCD的边CD的中点, ∴DE=CE,
在△ADE和△FCE中,
,∴△ADE≌△FCE(AAS);
(2)∵ADE≌△FCE, ∴AE=EF=3, ∵AB∥CD, ∴∠AED=∠BAF=90°,
在▱ABCD中,AD=BC=5, ∴DE==4, ∴CD=2DE=8
考点:(1)平行四边形的性质;(2)全等三角形的判定与性质
26、(1);(2)或或;(3)①交点坐标为,②.
【解析】
(1)观察可知当x=-2时y=0,所以经过定点
(2)先分类和讨论,分别得y=x,y=2-x,据此画出函数图象,再观察得出k的取值范围.
(3)①当时,,画出图象观察即可得出答案.
②分四种情况讨论.设与正方形交于、两点.与正方形无交点;点位于边上;点位于上时;点与点重合.根据四种情况分别画出图形,进行计算.
【详解】
(1)观察可知当x=-2时y=0,所以经过定点
(2)解:时,图象如图
当或或,直线与函数的图象存在唯一的公共点,
(3)①当时,,图象如图.
观察可知交点坐标为
②解:由图象可知令顶点为
与正方形交于、两点
1)当时,与正方形无交点,如下图所示,此时.
2)当时,点位于边上
3)当时,点位于上时
4)当时,点与点重合
∴综上所述
本题考查了一次函数的性质和分类讨论的思想,正确分类画出图象是解决问题的关键.
题号
一
二
三
四
五
总分
得分
代数
几何
综合
甲
85
92
75
乙
70
83
90
甲校成绩统计表
成绩
7分
8分
9分
10分
人数
11
0
8
相关试卷
这是一份2024年辽宁省北票市龙潭乡初级中学数学九上开学检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省安丘市红沙沟镇红沙沟中学九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省丰宁满族自治县九上数学开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。