辽宁省营口市大石桥市石佛中学2024年九上数学开学质量检测试题【含答案】
展开
这是一份辽宁省营口市大石桥市石佛中学2024年九上数学开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是( )
A.130°B.80°C.100°D.50°
2、(4分)下列命题中,不正确的是( ).
A.一个四边形如果既是矩形又是菱形,那么它一定是正方形
B.有一个角是直角,且有一组邻边相等的平行四边形是正方形
C.有一组邻边相等的矩形是正方形
D.两条对角线垂直且相等的四边形是正方形
3、(4分)如果把分式中的x和y都扩大为原来的2倍,那么分式的值( )
A.不变B.缩小2倍C.扩大2倍D.扩大4倍
4、(4分)关于的方程有实数根,则满足( )
A.B.且C.且D.
5、(4分)正方形具有而菱形不一定具有的性质是( )
A.对角线互相平分
B.每条对角线平分一组对角
C.对边相等
D.对角线相等
6、(4分)小颖现已存款200元,为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是( )
A.y=10xB.y=120xC.y=200-10xD.y=200+10x
7、(4分)关于的不等式的解集如图所示,则的取值是
A.0B.C.D.
8、(4分)下列各组数据中,不能作为直角三角形边长的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在学校组织的科学素养竞赛中,八(3)班有25名同学参赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,现将该班的成绩绘制成扇形统计图如图所示,则此次竞赛中该班成绩在70分以上(含70分)的人数有_______人.
10、(4分)已知反比例函数 y=的图像都过A(1,3)则m=______.
11、(4分)己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.
12、(4分)直线y=﹣3x+5与x轴交点的坐标是_____.
13、(4分)如图,一次函数的图象经过点,则关于的一元一次方程的解为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在菱形中,点是边的中点,试分别在下列两个图形中按要求使用无刻度的直尺画图.
(1)在图1中,过点画的平行线;
(2)在图2中,连接,在上找一点,使点到点,的距离之和最短.
15、(8分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.
(1)△BEC是否为等腰三角形?证明你的结论;
(2)若AB=2,∠DCE=22.5°,求BC长.
16、(8分)如图,等边△ABC的边长6cm.①求高AD;②求△ABC的面积.
17、(10分)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,那么称点P是线段AB的“附近点”.
(1)请判断点D(4.5,2.5)是否是线段AB的“附近点”;
(2)如果点H (m,n)在一次函数的图象上,且是线段AB的“附近点”,求m的取值范围;
(3)如果一次函数y=x+b的图象上至少存在一个“附近点”,请直接写出b的取值范围.
18、(10分)学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.
(每组可含最低值,不含最高值)
请根据上述信息,回答下列问题:
(1)你认为哪位学生抽取的样本具有代表性? _____.估计该校全体八年级学生平均每周上网时间为_____h;
(2)在具有代表性的样本中,中位数所在的时间段是_____h/周;
(3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中有一点,则点P到原点O的距离是________.
20、(4分)若正多边形的一个内角等于,则这个正多边形的边数是_______条.
21、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
22、(4分)在△ABC中,若∠A,∠B满足|csA-|+(sinB-)2=0,则∠C=_________.
23、(4分)将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.
(1)求甲每小时加工多少个零件?
(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?
25、(10分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.
26、(12分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是______,与的位置关系是______;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平行四边形的性质即可解答.
【详解】
解:在平行四边形ABCD中,
∠A+∠C=100°,
故∠A=∠C=50°,
且AD∥BC,
故∠B=180°-50°=130°.
故答案选A.
本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.
2、D
【解析】
试题分析:根据正方形的判定定理可得选项A正确;有一个角是直角的平行四边形是矩形,有一组邻边相等的矩形是正方形,选项B正确;有一组邻边相等的矩形是正方形,选项C正确;两条对角线垂直平方且相等的四边形是正方形,选项D错误,故答案选D.
考点:正方形的判定.
3、C
【解析】
直接利用分式的性质化简得出答案.
【详解】
解:把分式中的x和y都扩大为原来的2倍,
则原式可变为:=,
故分式的值扩大2倍.
故选:C.
此题主要考查了分式的基本性质,正确化简分式是解题关键.
4、A
【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
【详解】
当a=5时,原方程变形为-4x-1=0,解得x=-;
当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
所以a的取值范围为a≥1.
故选A.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
5、D
【解析】
列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.
【详解】
正方形具有而菱形不一定具有的性质是:
①正方形的对角线相等,而菱形不一定对角线相等;
②正方形的四个角是直角,而菱形的四个角不一定是直角.
故选D.
本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.
6、D
【解析】
根据题意可以写出存款总金额y(元)与时间x(月)之间的函数关系式,从而可以解答本题.
【详解】
解:由题意可得,
y=200+10x,
故选:D.
本题考查函数关系式,解答本题的关键是明确题意,写出函数关系式.
7、D
【解析】
首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;
【详解】
解:不等式,
解得x
相关试卷
这是一份2024年辽宁省营口市大石桥市金桥中学九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省营口市大石桥市石佛中学2023年数学八上期末学业质量监测模拟试题【含解析】,共17页。试卷主要包含了计算,如图,直线,,,则的度数是等内容,欢迎下载使用。
这是一份辽宁省营口市大石桥市石佛中学2023-2024学年数学九年级第一学期期末统考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件是必然事件的是等内容,欢迎下载使用。