终身会员
搜索
    上传资料 赚现金

    临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】

    立即下载
    加入资料篮
    临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】第1页
    临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】第2页
    临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】

    展开

    这是一份临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是( )
    A.B.C.D.
    2、(4分)若,则的值为( )
    A.B.C.D.
    3、(4分)已知x=,y=,则x2+xy+y2的值为( )
    A.2B.4C.5D.7
    4、(4分)已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1, 2)在这个反比例函数上,a的值可以是( )
    A.0B.1C.2D.3
    5、(4分)如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是( )
    A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5
    C.a:b:c=::D.a=6,b=10,c=12
    6、(4分)计算的结果是( )
    A.2B.C.D.-2
    7、(4分)如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是( )
    A.13 B. C.60 D.120
    8、(4分)顺次连接矩形四边中点所得的四边形一定是( )
    A.正方形B.矩形C.菱形D.等腰梯形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
    10、(4分)已知直线与反比例函数的图象交于A、B两点,当线段AB的长最小时,以AB为斜边作等腰直角三角形△ABC,则点C的坐标是__________.
    11、(4分)若二次根式有意义,则实数m的取值范围是_________.
    12、(4分)若数使关于的不等式组有且只有四个整数解,的取值范围是__________.
    13、(4分)已知一次函数y=kx+b的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______。
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知实数a,b,c在数轴上的位置如图所示,化简:.
    15、(8分)菱形ABCD中,两条对角线AC、BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.
    (1)如图2,当∠ABC=60°时,猜想三条线段CE、CF、AB之间的数量关系___;
    (2)如图1,当∠ABC=90°时,若AC=4 ,BE=,求线段EF的长;
    (3)如图3,当∠ABC=90°,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,请直接写出你的结论.
    16、(8分)在△ABC中,
    (1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)
    (2)连接BO并延长至D,使得,连接DA、DC,证明四边形ABCD是矩形.
    17、(10分)图1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,两点都在格点上,连结,请完成下列作图:
    (1)以为对角线在图1中作一个正方形,且正方形各顶点均在格点上.
    (2)以为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上.
    (3)以为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上.
    18、(10分)解不等式,并把解集表示在数轴上.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)关于的方程有实数根,则的取值范围是_________.
    20、(4分)若二次根式有意义,则的取值范围是______________.
    21、(4分)如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________.
    22、(4分)如图,将一张矩形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C'的位置上,若∠BFE=67°,则∠ABE的度数为_____.
    23、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.
    25、(10分)如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.
    (1)求证:CM⊥EF.
    (2)设正方形ABCD的边长为2,若五边形BCDEF的面积为,请直接写出CM的长.
    26、(12分)已知一次函数y=(3-k)x-2k2+18.
    (1)当k为何值时,它的图象经过原点?
    (2)当k为何值时,它的图象经过点(0,-2)?
    (3)当k为何值时,它的图象平行于直线y=-x?
    (4)当k为何值时,y随x增大而减小?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
    【详解】
    取中点,连接、、,


    在中,利用勾股定理可得.
    在中,根据三角形三边关系可知,
    当、、三点共线时,最大为.
    故选:.
    本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
    2、C
    【解析】
    首先设,将代数式化为含有同类项的代数式,即可得解.
    【详解】



    故答案为C.
    此题主要考查分式计算,关键是设参数求值.
    3、B
    【解析】
    试题分析:根据二次根式的运算法则进行运算即可.
    试题解析:
    .
    故应选B
    考点:1.二次根式的混合运算;2.求代数式的值.
    4、A
    【解析】
    根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.
    解:∵反比例函数,在每个象限内y随着x的增大而增大,
    ∴函数图象在二、四象限,
    ∴图象上的点的横、纵坐标异号.
    A、a=0时,得P(-1,2),故本选项正确;
    B、a=1时,得P(0,2),故本选项错误;
    C、a=2时,得P(1,2),故本选项错误;
    D、a=3时,得P(2,2),故本选项错误.
    故选A.
    此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.
    5、D
    【解析】
    根据勾股定理的逆定理和三角形的内角和定理进行判定即可.
    【详解】
    解:A、∵∠A=25°,∠B=65°,
    ∴∠C=180°﹣∠A﹣∠B=90°,
    ∴△ABC是直角三角形,故A选项正确;
    B、∵∠A:∠B:∠C=2:3:5,
    ∴,
    ∴△ABC是直角三角形;故B选项正确;
    C、∵a:b:c=::,
    ∴设a=k,b=k,c=k,
    ∴a2+b2=5k2=c2,
    ∴△ABC是直角三角形;故C选项正确;
    D、∵62+102≠122,
    ∴△ABC不是直角三角形,故D选项错误.
    故选:D.
    本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.
    6、A
    【解析】
    根据分式的混合运算法则进行计算即可得出正确选项。
    【详解】
    解:
    =2
    故选:A
    本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.
    7、D
    【解析】
    由折叠图形的性质求得∠HEF=90°,则∠HEF=∠EFG=∠FGH=∠GHE=90∘ , 得到四边形EHFG是矩形,再由折叠的性质得矩形ABCD的面积等于矩形EFGH面积的2倍,根据已知数据即可求出矩形ABCD的面积.
    【详解】
    如图,
    根据折叠的性质可得∠AEH=∠MEH,∠BEF=∠FEM,
    ∴∠AEH+∠BEF=∠MEH+∠FEM,
    ∴∠HEF=90°,
    同理得∠HEF=∠EFG=∠FGH=∠GHE=90∘
    ∴四边形EHFG是矩形,
    由折叠的性质得:S矩形ABCD=2S矩形HEFG=2×EH×EF=2×5×12=120;
    故答案为:D.
    本题考查矩形的折叠问题,解题关键在于能够得到四边形EHFG是矩形
    8、C
    【解析】
    矩形的性质,三角形中位线定理,菱形的判定.
    【分析】如图,连接AC.BD,
    在△ABD中,∵AH=HD,AE=EB,∴EH=BD.
    同理FG=BD,HG=AC,EF=AC.
    又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE.
    ∴四边形EFGH为菱形.故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    D、E是AC和BC的中点,则DE是△ABC的中位线,则依据三角形的中位线定理即可求解.
    【详解】
    解:∵D,E分别是AC,BC的中点,
    ∴AB=2DE=1m.
    故答案为:1.
    本题考查了三角形的中位线定理,正确理解定理是解题的关键.
    10、或
    【解析】
    联立方程组,求出A、B的坐标,分别用k表示,然后根据等腰直角三角形的两直角边相等求出k的值,即可求出结果.
    【详解】
    由题可得,
    可得,
    根据△ABC是等腰直角三角形可得:

    解得,
    当k=1时,点C的坐标为,
    当k=-1时,点C的坐标为,
    故答案为或.
    本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.
    11、m≤3
    【解析】
    由二次根式的定义可得被开方数是非负数,即可得答案.
    【详解】
    解:由题意得:解得: ,故答案为:.
    本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
    12、
    【解析】
    此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.
    【详解】
    解不等式①得,x<5,
    解不等式②得,x≥2+2a,
    由上可得2+2a≤x<5,
    ∵不等式组恰好只有四个整数解,即1,2,3,4;
    ∴0<2+2a≤1,
    解得,.
    此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    13、y=2x+2
    【解析】
    根据一次函数解析式y=kx+b,再将点(-1,0)和点(0,2)代入可得方程组,解出即可得到k和b的值,即得到解析式.
    【详解】
    因为点(-1,0)和点(0,2)经过一次函数解析式y=kx+b,所以0=-x+b,2=b,得到k=2,b=2,所以一次函数解析式是:y=2x+2,故本题答案是:y=2x+2.
    本题考查用待定系数法求一次函数解析式,难度不大,关键是掌握待定系数发的运用.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.
    【详解】
    由数轴,得,,,.
    则原式.
    此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.
    15、(1)CE+CF=AB;(2);(3)CF−CE =O`C.
    【解析】
    (1)如图1中,连接EF,在CO上截取CN=CF,只要证明△OFN≌△EFC,即可推出CE+CF=OC,再证明OC= AB即可.
    (2)先证明△OBE≌△OCF得到BE=CF,在Rt△CEF中,根据CE +CF=EF即可解决问题.
    (3)结论:CF-CE=O`C,过点O`作O`H⊥AC交CF于H,只要证明△FO`H≌△EOC,推出FH=CE,再根据等腰直角三角形性质即可解决问题.
    【详解】
    (1)结论CE+CF=AB.
    理由:如图1中,连接EF,在CO上截取CN=CF.
    ∵∠EOF+∠ECF=180°,
    ∴O、E. C. F四点共圆,
    ∵∠ABC=60°,四边形ABCD是菱形,
    ∴∠BCD=180°−∠ABC=120°,
    ∴∠ACB=∠ACD=60°,
    ∴∠OEF=∠OCF,∠OFE=∠OCE,
    ∴∠OEF=∠OFE=60°,
    ∴△OEF是等边三角形,
    ∴OF=FE,
    ∵CN=CF,∠FCN=60°,
    ∴△CFN是等边三角形,
    ∴FN=FC,∠OFE=∠CFN,
    ∴∠OFN=∠EFC,
    在△OFN和△EFC中,

    ∴△OFN≌△EFC,
    ∴ON=EC,
    ∴CE+CF=CN+ON=OC,
    ∵四边形ABCD是菱形,∠ABC=60°,
    ∴∠CBO=30°,AC⊥BD,
    在RT△BOC中,∵∠BOC=90°,∠OBC=30°,
    ∴OC=BC=AB,
    ∴CE+CF=AB.
    (2)连接EF
    ∵在菱形ABCD中,∠ABC=90°,
    ∴菱形ABCD是正方形,
    ∴∠BOC=90°,OB=OC,AB=AC,∠OBE=∠OCF=45°,∠BCD=90°
    ∵∠EOF+∠BCD=180°,
    ∴∠EOF=90°,
    ∴∠BOE=∠COF
    ∴△OBE≌△OCF,
    ∴BE=CF,
    ∵BE=,
    ∴CF=,
    在Rt△ABC中,AB+BC=AC,AC=4
    ∴BC=4,
    ∴CE= ,
    在Rt△CEF中,CE+CF=EF,
    ∴EF=
    答:线段EF的长为,
    (3)结论:CF−CE=O`C.
    理由:过点O`作O`H⊥AC交CF于H,
    ∵∠O`CH=∠O`HC=45°,
    ∴O`H=O`C,
    ∵∠FO`E=∠HO`C,
    ∴∠FO`H=∠CO`E,
    ∵∠EO`F=∠ECF=90°,
    ∴O`.C. F. E四点共圆,
    ∴∠O`EF=∠OCF=45°,
    ∴∠O`FE=∠O`EF=45°,
    ∴O`E=O`F,
    在△FO`H和△EO`C中,

    ∴△FO`H≌△EOC,
    ∴FH=CE,
    ∴CF−CE=CF−FH=CH=O`C.
    本题考查正方形的性质、全等三角形的判定和性质、勾股定理、四点共圆等知识,解题的关键是发现四点共圆,添加辅助线构造全等三角形,属于中考压轴题.
    16、 (1)详见解析;(2)详见解析
    【解析】
    (1)利用基本作图作AC的垂直平分线得到AC的中点O;
    (2)利用直角三角形斜边上的中线得到,然后根据对角线互相平分且相等的四边形为矩形可证明四边形ABCD是矩形.
    【详解】
    (1)解:如图,点O为所作:
    (2)证明:∵线段AC的垂直平分线,




    ∴四边形ABCD为矩形.
    本题考查了作图—基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了矩形的判定.
    17、 (1)见解析;(2)见解析;(3)见解析.
    【解析】
    见详解.
    【详解】
    解:(1)根据正方形的性质,先作垂直于且与长度相等的另一条对角线,则得到下图的正方形为所求作的正方形.
    (2)假设矩形长和宽分别为,则,可得,则长应为,宽应为,则下图的矩形为所求作的矩形.
    (3) 根据平行四边形面积公式,可得下图的平行四边形为所求作的平行四边形.(画出下列一种即可)
    本题考查矩形、正方形、平行四边形的性质.
    18、,数轴见解析.
    【解析】
    按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可得.
    【详解】
    解:去分母得:,
    移项得:x-3x<2+2-5,
    合并同类项得:,
    系数化为1得:,
    把解集在数轴上表示如下:
    .
    本题考查了解一元一次不等式,熟练掌握解一元一次不等式的一般步骤以及注意事项是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、k≤2
    【解析】
    当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.
    【详解】
    当k-1=0,即k=1时,方程为2x+1=0,
    解得x=-,符合题意;
    ②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,
    解得:k≤2且k≠1.
    综上即可得出k的取值范围为k≤2.
    故答案为k≤2.
    本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.
    20、
    【解析】
    根据二次根式的意义,被开方数是非负数求解即可.
    【详解】
    根据题意得:
    解得,
    故答案为:.
    本题主要考查学生对二次根式有意义时被开方数的取值的掌握,熟知二次根式有意义的条件是解题的关键.
    21、(2,﹣3)
    【解析】
    试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
    解:根据题意,知
    点A与B关于原点对称,
    ∵点A的坐标是(﹣2,3),
    ∴B点的坐标为(2,﹣3).
    故答案是:(2,﹣3).
    点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.
    22、44°
    【解析】
    利用平行线的性质以及三角形的内角和定理即可解决问题.
    【详解】
    ∵AD∥BC,
    ∴∠DEF=∠BFE=67°;
    又∵∠BEF=∠DEF=67°,
    ∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣67°﹣67°=46°,
    ∵∠A=90°,
    ∴∠ABE=90°﹣46°=44°,
    故答案为44°.
    本题考查平行线的性质,解题的关键是熟练掌握作为基本知识.
    23、<<
    【解析】
    分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.
    【详解】
    解:当x=1时,=-2×1=-2;
    当x=-1时,=-2×(-1)=2;
    当x=-2时,=-2×(-2)=4;
    ∵-2<2<4
    ∴<<
    故答案为:<<.
    本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.
    【详解】
    如图,①连接AB,AC,
    ②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,
    则P即为售票中心.
    此题考查了线段垂直平分线的性质.此题难度不大,注意掌握线段垂直平分线的作法.
    25、(1)见解析;(2)
    【解析】
    (1)连结 CE,CF,知道AE=AF,可得CE=CF,即可证明;(2)正方形ABCD的边长为2,若五边形BCDEF的面积为,则可算出△AEF的面积,从而求出CM
    【详解】
    (1)证明:连结 CE,CF
    ∵四边形 ABCD 是正方形
    ∴∠B=∠D=90°, BC=CD AB=AD
    又 AE=AF
    ∴BE=DF
    ∴△CBE≌△CDF(SAS)
    ∴CE=CF
    而M 是 EF 中点
    ∴CM⊥EF(等腰三角形三线合一)
    (2)连接AM,由(1)可知,AMC三点共线,
    正方形ABCD的边长为2,若五边形BCDEF的面积为,则△ AEF的面积为,
    则AC=,AE=AF=,
    ∴EF=,AM=,则CM=-=
    熟练掌握正方形内边角的转换计算和辅助线作法是解决本题的关键
    26、 (1)见解析;(2) k=±;(1) k=4;(4) k>1.
    【解析】
    【分析】(1) 将点(0,0)代入解析式y=(1-k)x-2k2+18;(2)将点(0,-2)代入解析式y=(1-k)x-2k2+18;(1)由图像平行于直线y=-x,得两个函数的一次项系数相等,即1-k=-1;
    (4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0.
    【详解】解:(1)∵一次函数的图像经过原点,
    ∴点(0,0)在一次函数的图像上,
    将点(0,0)代入解析式得:0=-2k2+18,
    解得:k=±1.
    又∵y=(1-k)x-2k2+18是一次函数,
    ∴1-k≠0,
    ∴k≠1.
    ∴k=-1.
    (2)∵图像经过点(0,-2),
    ∴点(0,-2)满足函数解析式,代入得:-2=-2k2+18,
    解得:k=±.
    (1)∵图像平行于直线y=-x,
    ∴两个函数的一次项系数相等,即1-k=-1.
    解得k=4.
    (4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0,
    即1-k<0,
    解得k>1.
    【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.
    题号





    总分
    得分

    相关试卷

    安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题【含答案】:

    这是一份安庆九一六校2025届数学九年级第一学期开学综合测试模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省临沂市九年级数学第一学期开学达标检测模拟试题【含答案】:

    这是一份2025届山东省临沂市九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河南卢氏县数学九年级第一学期开学综合测试模拟试题【含答案】:

    这是一份2025届河南卢氏县数学九年级第一学期开学综合测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map