终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    六安市重点中学2024年数学九年级第一学期开学预测试题【含答案】

    立即下载
    加入资料篮
    六安市重点中学2024年数学九年级第一学期开学预测试题【含答案】第1页
    六安市重点中学2024年数学九年级第一学期开学预测试题【含答案】第2页
    六安市重点中学2024年数学九年级第一学期开学预测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    六安市重点中学2024年数学九年级第一学期开学预测试题【含答案】

    展开

    这是一份六安市重点中学2024年数学九年级第一学期开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列命题中是真命题的有( )个.
    ①当x=2时,分式的值为零②每一个命题都有逆命题③如果a>b,那么ac>bc④顺次连接任意四边形各边中点得到的四边形是平行四边形⑤一组对边平行,另一组对边相等的四边形是平行四边形.
    A.0B.1C.2D.3
    2、(4分)下列数字图形中,是中心对称图形,但不是轴对称图形的为( )
    A.B.C.D.
    3、(4分)如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是( )
    A.AE=BFB.AE⊥BF
    C.AO=OED.S△AOB=S四边形DEOF
    4、(4分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是( )
    A.120°B.130°C.140°D.150°
    5、(4分)某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )
    A.8B.7C.9D.10
    6、(4分)关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为( )
    A.﹣5B.﹣2C.0D.﹣8
    7、(4分)若一个多边形的每一个外角都是40°,则这个多边形是( )
    A.七边形B.八边形C.九边形D.十边形
    8、(4分)以下各点中,在一次函数的图像上的是( )
    A.(2,4)B.(-1,4)C.(0,5)D.(0,6)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x枚,白棋有y枚.如果从盒中随机取出一枚为黑棋的概率是,那么y=___.(请用含x的式子表示y)
    10、(4分)如图,已知矩形ABCD的边AB=3,AD=8,顶点A、D分别在x轴、y轴上滑动,在矩形滑动过程中,点C到原点O距离的最大值是______.
    11、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
    12、(4分)如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.
    13、(4分)的小数部分为_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
    (1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
    (2)如图1,求AF的长.
    (3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.
    ①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.
    ②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
    15、(8分)如图,在平面直角坐标系中,直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,l2交x轴于点A,点P是直线l1上一动点,过点P作PQ∥y轴交l2于点Q
    (1)求出点A的坐标;
    (2)连接AP,当△APQ为以PQ为底边的等腰三角形时,求点P和点Q的坐标;
    (3)点B为OA的中点,连接OQ、BQ,若点P在y轴的左侧,M为直线y=﹣1上一动点,当△PQM与△BOQ全等时,求点M的坐标.
    16、(8分).已知:如图4,在中,∠BAC=90°,DE、DF是的中位线,连结EF、AD. 求证:EF=AD.
    17、(10分)已知:如图,四边形ABCD是菱形,AB=AD.
    求证:(1) AB=BC=CD=DA
    (2) AC⊥DB
    (3) ∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA
    18、(10分)如图,AM∥BC,D,E分别为AC,BC的中点,射线ED交AM于点F,连接AE,CF。
    (1)求证:四边形ABEF是平行四边形;
    (2)当AB=AC时,求证:四边形AECF时矩形;
    (3)当∠BAC=90°时,判断四边形AECF的形状,(只写结论,不必证明)。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)
    (1)∠DFC+∠FEC=90°;(2)∠B=∠AEF;(3)CF=EF;(4)
    20、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是 _______________
    21、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.
    22、(4分)一组数据:的方差是__________.
    23、(4分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为 ▲ .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.
    (1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;
    (2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?
    25、(10分)化简:
    (1);
    (2).
    26、(12分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)
    (1)分别求出本周内甲、乙两种水果每天销售量的平均数;
    (2 )哪种水果销售量比较稳定?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据分式为0的条件、命题的概念、不等式的性质、平行四边形的判定定理进行判断即可.
    【详解】
    ①当x=2时,分式无意义,①是假命题;
    ②每一个命题都有逆命题,②是真命题;
    ③如果a>b,c>0,那么ac>bc,③是假命题;
    ④顺次连接任意四边形各边中点得到的四边形是平行四边形,④是真命题;
    ⑤一组对边平行,另一组对边相等的四边形不一定是平行四边形,⑤是假命题,
    故选C.
    2、A
    【解析】
    根据轴对称图形和中心对称图形的概念对各选项分析判断即可;
    【详解】
    A选项中,是中心对称图形但不是轴对称图形,故本选项正确;
    B选项中,是中心对称图形,也是轴对称图形,故本选项错误;
    C选项中,是中心对称图形,也是轴对称图形,故本选项错误;
    D选项中,不是中心对称图形,也不是轴对称图形,故本选项错误;
    本题主要考查了轴对称图形和中心对称图形的概念,掌握轴对称图形和中心对称图形的概念是解题的关键.
    3、C
    【解析】
    试题解析:A、∵在正方形ABCD中,




    ∴≌

    故此选项正确;
    B、∵≌





    故此选项正确;
    C、连接
    假设AO=OE,



    ∴≌



    ∴AB不可能等于BE,
    ∴假设不成立,即
    故此选项错误;
    D、∵≌


    ∴S△AOB=S四边形DEOF,故此选项正确.
    故选C.
    4、C
    【解析】
    由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.
    【详解】
    ∵四边形ABCD是菱形,
    ∴OB=OD,AC⊥BD,∠ADC=∠ABC,
    ∵DH⊥AB,
    ∴OH=OB=BD,
    ∵∠DHO=20°,
    ∴∠OHB=90°﹣∠DHO=70°,
    ∴∠ABD=∠OHB=70°,
    ∴∠ADC=∠ABC=2∠ABD=140°,
    故选C.
    本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.
    5、C
    【解析】
    试题分析:根据中位数的概念求解.∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为:=1.
    故选C.
    考点:中位数.
    6、C
    【解析】
    利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.
    【详解】
    解:依题意,关于x的一元二次方程,有两个不相等的实数根,即
    △=b2﹣4ac=42+8c>1,得c>﹣2
    根据选项,只有C选项符合,
    故选:C.
    本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式 有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1 时,方程有两个相等的实数根;③当△<1 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.
    7、C
    【解析】
    根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.
    【详解】
    360÷40=9,即这个多边形的边数是9,
    故选C.
    本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
    8、D
    【解析】
    分别将各选项中的点代入一次函数解析式进行验证.
    【详解】
    A.当x=2时,,故点(2,4)不在一次函数图像上;
    B.当x=-1时,,故点(-1,4)不在一次函数图像上;
    C.当x=0时,,故点(0,5)不在一次函数图像上;
    D.当x=0时,,故点(0,6)在一次函数图像上;
    故选D.
    本题考查判断点是否在函数图像上,将点坐标代入函数解析式验证是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3x.
    【解析】
    根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.
    【详解】
    ∵从盒中随机取出一枚为黑棋的概率是,
    ∴,
    整理,得:y=3x,
    故答案为:3x.
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
    10、1
    【解析】
    取AD的中点E,连接OE,CE,OC,根据直角三角形斜边上的中线等于斜边的一半即可求出OE,然后根据勾股定理即可求CE,然后根据两点之间线段最短即可求出OC的最大值.
    【详解】
    如图,取AD的中点E,连接OE,CE,OC,
    ∵∠AOD=10°,
    ∴Rt△AOD中,OE=AD=4,
    又∵∠ADC=10°,AB=CD=3,DE=4,
    ∴Rt△CDE中,CE==5,
    又∵OC≤CE+OE=1(当且仅当O、E、C共线时取等号),
    ∴OC的最大值为1,
    即点C到原点O距离的最大值是1,
    故答案为:1.
    此题考查的是直角三角形的性质和求线段的最值问题,掌握直角三角形斜边上的中线等于斜边的一半、利用勾股定理解直角三角形和两点之间线段最短是解决此题的关键.
    11、∠B=∠1或
    【解析】
    此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
    【详解】
    此题答案不唯一,如∠B=∠1或.
    ∵∠B=∠1,∠A=∠A,
    ∴△ADE∽△ABC;
    ∵,∠A=∠A,
    ∴△ADE∽△ABC;
    故答案为∠B=∠1或
    此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.
    12、8
    【解析】
    先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.
    【详解】
    ∵点E,F分别是BD,DC的中点,
    ∴FE是△BCD的中位线,
    ∴EF=BC=3,
    ∵∠BAD=90°,AD=BC=6,AB=8,
    ∴BD=10,
    又∵E是BD的中点,
    ∴Rt△ABD中,AE=BD=5,
    ∴AE+EF=5+3=8,
    故答案为:8
    本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.
    13、﹣1.
    【解析】
    解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)AF=5cm;(3)①有可能是矩形,P点运动的时间是8,Q的速度是0.5cm/s;②t=.
    【解析】
    (1)证△AEO≌△CFO,推出OE=OF,根据平行四边形和菱形的判定推出即可;
    (2)设AF=CF=a,根据勾股定理得出关于a的方程,求出即可;
    (3)①只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,求出时间t,即可求出答案;②分为三种情况,P在AF上,P在BF上,P在AB上,根据平行四边形的性质求出即可.
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠AEO=∠CFO,
    ∵AC的垂直平分线EF,
    ∴AO=OC,AC⊥EF,
    在△AEO和△CFO中
    ∵ ,
    ∴△AEO≌△CFO(AAS),
    ∴OE=OF,
    ∵OA=OC,
    ∴四边形AECF是平行四边形,
    ∵AC⊥EF,
    ∴平行四边形AECF是菱形;
    (2)解:设AF=acm,
    ∵四边形AECF是菱形,
    ∴AF=CF=acm,
    ∵BC=8cm,
    ∴BF=(8﹣a)cm,
    在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,
    a=5,
    即AF=5cm;
    (3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,
    只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,
    P点运动的时间是:(5+3)÷1=8,
    Q的速度是:4÷8=0.5,
    即Q的速度是0.5cm/s;
    ②分为三种情况:第一、P在AF上,
    ∵P的速度是1cm/s,而Q的速度是0.8cm/s,
    ∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;
    第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,
    ∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),
    ∴8﹣(0.8t﹣4)=5+(t﹣5),
    t=,
    第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;
    即t=.
    考查了矩形的性质,平行四边形的性质和判定,菱形的判定和性质,勾股定理,全等三角形的性质和判定,线段垂直平分线性质等知识点的综合运用,用了方程思想,分类讨论思想.
    15、(1)A(2,0);(2)P(3,),Q(3,﹣);(3)M(﹣1,﹣1)或(﹣1,8)
    【解析】
    (1)求出直线l2的解析式为y=﹣x+1,即可求A的坐标;
    (2)设点P(x,﹣x+2),Q(x,﹣x+1),由AQ=AP,即可求P点坐标;
    (3)设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),可求出BQ=,OQ=,PM=,QM=,①当△PQM≌△BOQ时,PM=BQ,QM=OQ,结合勾股定理,求出m;②当△QPM≌△BOQ时,有PM=OQ,QM=BQ,结合勾股定理,求出m即可.
    【详解】
    解:(1)∵直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,
    ∴直线l2的解析式为y=﹣x+1,
    ∵l2交x轴于点A,
    ∴A(2,0);
    (2)当△APQ为以PQ为底边的等腰三角形时,
    ∴AQ=AP,
    ∵点P是直线l1上一动点,
    设点P(x,﹣x+2),
    ∵过点P作PQ∥y轴交l2于点Q
    ∴Q(x,﹣x+1),
    ∴(﹣x+2)2=(﹣x+1)2,
    ∴x=3,
    ∴P(3,),Q(3,﹣);
    (3)∵点B为OA的中点,
    ∴B(1,0),
    ∴PQ=BO=1,
    设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),
    ∴BQ=,OQ=,
    PM=,QM=,①
    ∵△PQM与△BOQ全等,
    ①当△PQM≌△BOQ时,
    有PM=BQ,QM=OQ,
    =,=,
    ∴n=2m﹣2,
    ∵点P在y轴的左侧,
    ∴n<0,
    ∴m<1,
    ∴m=﹣1,
    ∴M(﹣1,﹣1);
    ②当△QPM≌△BOQ时,
    有PM=OQ,QM=BQ,
    =,=,
    ∴n=﹣m,
    ∵点P在y轴的左侧,
    ∴n<0,
    ∴m>2,
    ∴m=8,
    ∴M(﹣1,8);
    综上所述,M(﹣1,﹣1)或M(﹣1,8).1:y=﹣x+2向下平移1个单位后,得到直线l2,
    本题考查一次函数的综合;熟练掌握一次函数的图象特点,等腰三角形与全等三角形的性质是解题的关键.
    16、证明:因为DE,DF是△ABC的中位线
    所以DE∥AB,DF∥AC …………. 2分
    所以四边形AEDF是平行四边形 ………….… 5分
    又因为∠BAC=90°
    所以平行四边形AEDF是矩形……………………分
    所以EF=AD …………………………….….………10分
    【解析】略
    17、(1)证明见解析;(2)证明见解析;(3)证明见解析.
    【解析】
    (1)根据菱形定义:一组邻边相等的平行四边形是菱形即可解答;(2)利用SSS证明△ADO≌△CDO,可得:∠AOD=∠COD,又因为∠AOD+∠COD=180°,所以∠AOD=∠COD=90°即可得出AC⊥DB;(3)由△ADO≌△CDO,再根据全等三角形对应角相等,两直线平行,内错角相等即可解答.
    【详解】
    证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD=CB.
    又∵AB=AD,∴AB=BC=CD=DA.
    (2)在△ADO和△CDO中,
    ∵DA=DC,DO=DO,AO=CO,∴△ADO≌△CDO. ∴∠AOD=∠COD.
    ∵∠AOD+∠COD=180°,∴∠AOD=∠COD=90°. ∴AC⊥DB.
    (3) ∵△ADO≌△CDO, ∴∠ADB=∠CDB,∠DAC=∠DCA.
    ∵AB∥CD,AD∥CB,
    ∴∠ADB=∠CBD,∠CDB=∠ABD,∠DAC=∠BCA,∠DCA=∠BAC.
    ∴∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA.
    本题考查平行四边的性质、菱形性质、全等三角形的判定和性质、平行线的性质等,解题关键是熟练掌握以上性质.
    18、(1)见解析;(2)见解析;(3)四边形AECF是菱形
    【解析】
    (1)利用三角形的中位线定理得出AB∥EF,再由AM∥BC可得出结论;(2)易证ΔADF≌ΔCDE,得出DE=DF,推出四边形AECF是平行四边形,再根据对角线相等的平行四边形是矩形可得结果;(3)利用四边相等的四边形是菱形解答即可.
    【详解】
    (1)证明:∵D,E分别为AC,BC的中点, ∴AB∥EF,∵AB∥EF,AM∥BC
    ∴四边形ABEF是平行四边形
    (2)证明:∵AM∥BC
    ∴∠FAC=∠ACE,∠AFE=∠CEF
    ∵AD=DC
    ∴ΔADF≌ΔCDE
    ∴DE=DF
    ∴四边形AECF是平行四边形
    又∵四边形ABEF是平行四边形
    ∴AB=EF
    ∵AB=AC
    ∴AC=EF
    ∴平行四边形AECF是矩形
    (3)当∠BAC=90°时,四边形AECF是菱形。
    理由: ∵∠BAC=90°,BE=CE, ∴AE=BE=EC, ∵四边形ABEF是平行四边形, 四边形AECF是平行四边形, ∴AF=BE,AE=FC, ∴AE=EC=FC=AF, ∴四边形AECF是菱形.
    本题考查了平行四边形的性质与判定,矩形的判定与菱形的判定,解题的关键是熟练掌握性质与判定.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (1)(3)
    【解析】
    分别利用平行四边形的性质以及全等三角形的判定得出△AEF≌△DMF,得出角、线段之间关系,得出(1)(3)成立,(2)不成立;再由梯形面积和平行四边形面积关系进而得出(4)不成立.
    【详解】
    解:∵F是AD的中点,
    ∴AF=FD,
    ∵在▱ABCD中,AD=2AB,
    ∴AF=FD=CD,
    ∴∠DFC=∠DCF,
    ∵AD∥BC,
    ∴∠DFC=∠FCB,
    ∴∠DCF=∠BCF,
    延长EF,交CD延长线于M,如图所示:
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠A=∠MDF,
    ∵F为AD中点,
    ∴AF=FD,
    在△AEF和△DFM中,
    ∴△AEF≌△DMF(ASA),
    ∴FE=MF,∠AEF=∠M,
    ∵∠B=∠ADC>∠M,
    ∴∠B>∠AEF,(2)不成立;
    ∵CE⊥AB,
    ∴∠AEC=90°,
    ∴∠AEC=∠ECD=90°,
    ∵FM=EF,
    ∴CF=EF,(3)成立;
    ∴∠FEC=∠FCE,
    ∵∠DCF+∠FEC=90°,
    ∴∠DFC+∠FEC=90°,(1)成立;
    ∵四边形ADCE的面积=(AE+CD)×CE,F是AD的中点,
    ∴S△EFC=S四边形ADCE,
    ∵S△BDC=S平行四边形ABCD=CD×CE,
    ∴S△EFC≠S△BDC,(4)不成立;
    故答案为:(1)(3).
    此题主要考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,证出△AEF≌△DMF是解题关键.
    20、m<
    【解析】
    当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2 .
    故答案为m<1/2 .
    21、x>1.
    【解析】
    ∵直线y=x+b与直线y=kx+6交于点P(1,5),
    ∴由图象可得,当x>1时,x+b>kx+6,
    即不等式x+b>kx+6的解集为x>1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    22、.
    【解析】
    根据方差的公式进行解答即可.
    【详解】
    解:==2019,
    ==0.
    故答案为:0.
    本题考查了方差的计算.
    23、10+.
    【解析】
    先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.
    ∵∠ACB=90°,DE⊥BC,∴AC∥DE.
    又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.
    在Rt△CDE中,DE= 1,CE=2,由勾股定理得.
    ∵D是BC的中点,∴BC=1CD=2.
    在△ABC中,∠ACB=90°,由勾股定理得.
    ∵D是BC的中点,DE⊥BC,∴EB=EC=2.
    ∴四边形ACEB的周长=AC+CE+EB+BA=10+.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y1=x+2,y2=x+20(2)见解析
    【解析】
    (1)由图像可知,l1的函数为一次函数,则设y1=k1x+b1.由图象知,l1过点(0,2)、(500,17),能够得出l 1的函数解析式.同理可以得出l2的函数解析式.
    (2)由图像可知l1、 l2的图像交于一点,那么交点处白炽灯和节能灯的费用相同,即x+2=x+20,由此得出x=1000时费用相同;x<1000时,使用白炽灯省钱;x>1000时,使用节能灯省钱.
    【详解】
    (1)设l1的函数解析式为y1=k1x+b1,
    由图象知,l1过点(0,2)、(500,17),
    可得方程组,解得,
    故,l1的函数关系式为y1=x+2;
    设l2的函数解析式为y2=k2x+b2,
    由图象知,l2过点(0,20)、(500,26),
    可得方程组,解得,
    y2=x+20;
    (2)由题意得,x+2=x+20,解得x=1000,
    故,①当照明时间为1000小时时,两种灯的费用相同;
    ②当照明时间超过1000小时,使用节能灯省钱.
    ③当照明时间在1000小时以内,使用白炽灯省钱.
    本题主要考查求一次函数的解析式、一次函数在实际生活中的应用.一次函数为中考重点考查内容,熟练掌握求一次函数解析式的方法是解决本题的关键.
    25、(1);(2).
    【解析】
    (1)根据分式的乘除、分式的加减运算法则,以及先算乘除再算加减的运算顺序,即可化简;
    (2)根据分式的乘除、分式的加减运算法则,以及先算乘除再算加减的运算顺序,即可化简.
    【详解】
    解:(1)原式=;
    (2)原式= .
    故答案为(1);(2).
    本题考查分式,难度一般,是中考的重要考点,熟练掌握分式的运算法则是顺利解题的关键.
    26、(1),;(2)乙种水果销量比较稳定.
    【解析】
    (1)根据平均数的公式计算即可.
    (2)根据方差公式计算,再根据方差的意义“方差越小越稳定”判断销售量哪家更稳定.
    【详解】
    (1),
    (2)



    所以乙种水果销量比较稳定.
    本题考查了求平均数和方差,熟练掌握平均数和方差公式是解答本题的关键,
    题号





    总分
    得分
    一周内累计的读书时间(小时)
    5
    8
    10
    14
    人数(个)
    1
    4
    3
    2
    品种 星期









    相关试卷

    丹东市重点中学2024年数学九年级第一学期开学预测试题【含答案】:

    这是一份丹东市重点中学2024年数学九年级第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    阿拉善市重点中学2024年数学九年级第一学期开学预测试题【含答案】:

    这是一份阿拉善市重点中学2024年数学九年级第一学期开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湘潭市重点中学数学九年级第一学期开学预测试题【含答案】:

    这是一份2025届湘潭市重点中学数学九年级第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map