终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    内蒙古呼伦贝尔满洲里市2025届九上数学开学经典模拟试题【含答案】

    立即下载
    加入资料篮
    内蒙古呼伦贝尔满洲里市2025届九上数学开学经典模拟试题【含答案】第1页
    内蒙古呼伦贝尔满洲里市2025届九上数学开学经典模拟试题【含答案】第2页
    内蒙古呼伦贝尔满洲里市2025届九上数学开学经典模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古呼伦贝尔满洲里市2025届九上数学开学经典模拟试题【含答案】

    展开

    这是一份内蒙古呼伦贝尔满洲里市2025届九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为( )
    A.﹣5B.﹣2C.0D.﹣8
    2、(4分)数据60,70,40,30这四个数的平均数是( )
    A.40B.50C.60D.70
    3、(4分)如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为( )
    A.8B.9C.10D.11
    4、(4分)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
    A.B.
    C.D.
    5、(4分)平行四边形、矩形、菱形、正方形都具有的是( )
    A.对角线互相平分
    B.对角线互相垂直
    C.对角线相等
    D.对角线互相垂直且相等
    6、(4分)如果a>b,下列各式中不正确的是( )
    A.a-3>b-3 B.C.2a>2bD.-2a+5<-2b+5
    7、(4分)下列说法正确的是( )
    A.明天的天气阴是确定事件
    B.了解本校八年级(2)班学生课外阅读情况适合作抽查
    C.任意打开八年级下册数学教科书,正好是第5页是不可能事件
    D.为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000
    8、(4分)如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是( )
    A.3cmB.6cmC.9cmD.12cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一次函数的图像经过点,那么这个一次函数在轴上的截距为__________.
    10、(4分)如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.
    11、(4分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=_____.
    12、(4分)如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°. 点D是边OB上一动点,点E在BC上,且∠DAE=60°.
    有下列结论:
    ①点C的坐标为(12,);②BD=CE;
    ③四边形ADBE的面积为定值;
    ④当D为OB的中点时,△DBE的面积最小.
    其中正确的有_______.(把你认为正确结论的序号都填上)
    13、(4分)如图,矩形中,,,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴的正半轴于,则点的表示的数为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形和都是平行四边形.求证:四边形是平行四边形.
    15、(8分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)
    16、(8分)一次函数(a为常数,且).
    (1)若点在一次函数的图象上,求a的值;
    (2)当时,函数有最大值2,请求出a的值.
    17、(10分)孝感市委市政府为了贯彻落实国家的“精准扶贫”战略部署,组织相关企业开展扶贫工作,博大公司为此制定了关于帮扶A、B两贫困村的计划.今年3月份决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗.已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
    (1)求这15辆车中大小货车各多少辆?
    (2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总运费为y元;
    ①试求出y与x的函数解析式;
    ②若运往A村的鱼苗不少于108箱,请你写出使总运费最少的货车调配方案,并求出最少运费.
    18、(10分)如图,抛物线与轴交于,两点在的左侧),与轴交于点.
    (1)求点,点的坐标;
    (2)求的面积;
    (3)为第二象限抛物线上的一个动点,求面积的最大值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.
    20、(4分)对于一次函数,若,那么对应的函数值y1与y2的大小关系是________.
    21、(4分)甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.
    22、(4分)如图1,在菱形中,,点在的延长线上,在的角平分线上取一点(含端点),连结并过点作所在直线的垂线,垂足为.设线段的长为,的长为,关于的函数图象及有关数据如图2所示,点为图象的端点,则时,_____,_____.

    23、(4分)己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知函数,
    (1)当m取何值时抛物线开口向上?
    (2)当m为何值时函数图像与x轴有两个交点?
    (3)当m为何值时函数图像与x轴只有一个交点?
    25、(10分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
    (1)写出运动员甲测试成绩的众数和中位数;
    (2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
    26、(12分)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.
    (1)当AB=2时,求GC的长;
    (2)求证:AE=EF.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.
    【详解】
    解:依题意,关于x的一元二次方程,有两个不相等的实数根,即
    △=b2﹣4ac=42+8c>1,得c>﹣2
    根据选项,只有C选项符合,
    故选:C.
    本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式 有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1 时,方程有两个相等的实数根;③当△<1 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.
    2、B
    【解析】
    用四个数的和除以4即可.
    【详解】
    (60+70+40+30)÷4=200÷4=50.
    故选B.
    本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.
    数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).
    3、C
    【解析】
    试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.
    解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;
    ∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,
    在△ABC和△CED中,

    ∴△ACB≌△CDE(AAS),
    ∴AB=CE,BC=DE;
    在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
    即Sb=Sa+Sc=1+9=10,
    ∴b的面积为10,
    故选C.
    考点:全等三角形的判定与性质;勾股定理;正方形的性质.
    4、C
    【解析】
    根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.
    【详解】
    解:分四种情况:
    ①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
    ②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
    ③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C选项符合;
    ④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
    故选C.
    一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
    5、A
    【解析】
    试题分析:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.
    故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.
    故选A.
    考点:特殊四边形的性质
    6、B
    【解析】
    根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.
    【详解】
    A选项:a>b,则a-3>b-3,所以A选项的结论正确;
    B选项:a>b,则-a<-b,所以B选项的结论错误;
    C选项:a>b,则2a>2b,所以C选项的结论正确;
    D选项:a>b,则-2a<-2b,所以D选项的结论正确.
    故选:B.
    考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.
    7、D
    【解析】
    根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定选项A、C的正误;根据普查和抽样调查的意义可判断出B的正误;根据样本容量的意义可判断出D的正误.
    【详解】
    解:A、明天的天气阴是随机事件,故错误;
    B、了解本校八年级(2)班学生课外阅读情况适合普查,故错误;
    C、任意打开八年级下册数学教科书,正好是第5页是随机事件,故错误;
    D、为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000,故正确;
    故选:D.
    本题考查了必然事件、不可能事件、随机事件的概念,普查和抽样调查的意义以及样本容量的意义.
    8、B
    【解析】
    根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,问题得解.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴BO=DO,
    ∵点E是AB的中点,
    ∴OE为△ABD的中位线,
    ∴AD=2OE,
    ∵OE=3cm,
    ∴AD=6cm.
    故选B.
    本题考查了平行四边形的性质、三角形的中位线定理,是基础知识比较简单,熟记平行四边形的各种性质是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    先将代入中求出m的值,然后令求出y的值即可.
    【详解】
    ∵一次函数的图像经过点,
    ∴,
    解得,
    ∴.
    令,则,
    ∴一次函数在轴上的截距为1.
    故答案为:1.
    本题主要考查待定系数法求一次函数的解析式,能够求出一次函数的解析式是解题的关键.
    10、(22018,0)
    【解析】
    根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.
    【详解】
    根据题意得:
    A1和B1的横坐标为1,
    把x=1代入y=x得:y=1
    B1的纵坐标为1,
    即A1B1=1,
    ∵△B1A1A2为等腰直角三角形,
    ∴A1A2=1,
    A2和B2的横坐标为1+1=2,
    同理:A3和B3的横坐标为2+2=4=22,
    A4和B4的横坐标为4+4=8=23,

    依此类推,
    A2019的横坐标为22018,纵坐标为0,
    即点A2019的坐标为(22018,0),
    故答案为:(22018,0).
    此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.
    11、22.5°
    【解析】
    根据正方形的对角线平分一组对角求出∠CBE=45°,再根据等腰三角形两底角相等求出∠BCE=67.5°,然后根据∠DCE=∠BCD-∠BCE计算即可得解.
    【详解】
    ∵四边形ABCD是正方形,
    ∴∠CBE=45°,∠BCD=90°,
    ∵BE=BC,
    ∴∠BCE=(180°-∠BCE)=×(180°-45°)=67.5°,
    ∴∠DCE=∠BCD-∠BCE=90°-67.5°=22.5°.
    故答案为22.5°.
    本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,需熟记.
    12、①②③
    【解析】
    ①过点C作CF⊥OB,垂足为点F,求出BF=4,CF=,即可求出点C坐标;②连结AB,证明△ADB≌△AEC,则BD=CE;③由S△ADB=S△AEC,可得S△ABC=S△四边形ADBE=×8×=;④可证△ADE为等边三角形,当D为OB的中点时,AD⊥OB,此时AD最小,则S△ADE最小,由③知S四边形ADBE为定值,可得S△DBE最大.
    【详解】
    解:①过点C作CF⊥OB,垂足为点F,
    ∵四边形AOBC为菱形,
    ∴OB=BC=8,∠AOB=∠CBF=60°,
    ∴BF=4,CF=,
    ∴OF=8+4=12,
    ∴点C的坐标为(12,),故①正确;
    ②连结AB,
    ∵BC=AC=AO=OB,∠AOB=∠ACB=60°,
    ∴△ABC是等边三角形,△AOB是等边三角形,
    ∴AB=AC,∠BAC=60°,
    ∵∠DAE=60°,
    ∴∠DAB=∠EAC,
    ∵∠ABD=∠ACE=60°,
    ∴△ADB≌△AEC(ASA),
    ∴BD=CE,故②正确;
    ③∵△ADB≌△AEC.
    ∴S△ADB=S△AEC,
    ∴S△ABC=S△四边形ADBE=×8×=,故③正确;
    ④∵△ADB≌△AEC,
    ∴AD=AE,
    ∵∠DAE=60°,
    ∴△ADE为等边三角形,
    当D为OB的中点时,AD⊥OB,
    此时AD最小,则S△ADE最小,
    由③知S四边形ADBE为定值,可得S△DBE最大.
    故④不正确;
    故答案为:①②③.
    本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质等,正确作出辅助线是解题的关键.
    13、
    【解析】
    首先根据勾股定理计算出的长,进而得到的长,再根据点表示,可得点表示的数.
    【详解】
    解:由勾股定理得:,
    则,
    点表示,
    点表示,
    故答案为:.
    此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析.
    【解析】
    首先根据平行四边形的性质,可得AD∥BC,AD=BC,BC∥EF,BC=EF,进而得出AD∥EF,AD=EF,即可判定.
    【详解】
    解:∵四边形ABCD和BEFC都是平行四边形,
    ∴AD∥BC,AD=BC,BC∥EF,BC=EF.
    ∴AD∥EF,AD=EF.
    ∴四边形AEFD是平行四边形.
    此题主要考查利用平行四边形的性质进行平行四边形的判定,熟练掌握,即可解题.
    15、点C到AB的距离约为14cm .
    【解析】
    通过勾股定理的逆定理来判断三角形ABC的形状,从而再利用三角形ABC的面积反求点C到AB的距离即可.
    【详解】
    解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离.
    在△ABC中,∵,,,
    ∴,,
    ∴ ,
    ∴△ABC为直角三角形,即∠ACB=90°.……
    ∵,
    ∴,即,
    ∴CE=14.4≈14 .
    答:点C到AB的距离约为14cm .
    本题的解题关键是掌握勾股定理的逆定理,能通过三角形面积反求对应的边长.
    16、(1);(2)或.
    【解析】
    (1))把代入即可求出a;
    (2)分①时和②时根据函数值进行求解.
    【详解】
    解:(1)把代入得,解得;
    (2)①时,y随x的增大而增大,
    则当时,y有最大值2,把,代入函数关系式得,解得;
    ②时,y随x的增大而减小,
    则当时,y有最大值2,把代入函数关系式得,解得,所以或.
    此题主要考查一次函数的图像,解题的关键是根据题意分情况讨论.
    17、(1)这15辆车中大货车用8辆,小货车用7辆;(2)①y=100x+9400(3≤x≤8,且x为整数);②使总运费最少的调配方案是:7辆大货车、3辆小货车前往A村;1辆大货车、4辆小货车前往B村.最少运费为10100元.
    【解析】
    (1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
    (2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;
    (3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
    【详解】
    解:(1)设大货车用x辆,小货车用y辆,根据题意得:

    解得:.
    故这15辆车中大货车用8辆,小货车用7辆.
    (2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400(3≤x≤8,且x为整数).
    (3)由题意得:12x+8(10﹣x)≥108,
    解得:x≥7,
    又∵3≤x≤8,
    ∴7≤x≤8且为整数,
    ∵y=100x+9400,
    k=100>0,y随x的增大而增大,
    ∴当x=7时,y最小,
    最小值为y=100×7+9400=10100(元).
    答:使总运费最少的调配方案是:7辆大货车、3辆小货车前往A村;1辆大货车、4辆小货车前往B村.最少运费为10100元.
    本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.
    18、(1),;(2);(3)当时,最大面积4.
    【解析】
    (1)在抛物线的解析式中, 设可以求出A、B点的坐标
    (2) 令,求出顶点C的坐标,进而能得出AB,CO的长度, 直接利用两直角边求面积即可
    (3) 作交于,设解析式把A,C代入求出解析式, 设则,把值代入求三角形的面积,即可解答
    【详解】
    (1)设,则


    (2)令,可得

    (3)如图:作交于
    设解析式
    解得:
    解析式
    设则
    当时,最大面积4
    此题考查二次函数综合题,解题关键在于做辅助线
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4cm
    【解析】
    根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AO=OC,OD=OB,
    又∵AC=10cm,BD=6cm,
    ∴AO=5cm,DO=3cm,
    本题考查了平行四边形的性质、勾股定理,找到四边形中的三角形是解题的关键.
    20、
    【解析】
    先根据一次函数判断出函数图象的增减性,再根据x1<x1进行判断即可.
    【详解】
    ∵直线,k=-<0,
    ∴y随x的增大而减小,
    又∵x1<x1,
    ∴y1>y1.
    故答案为>.
    本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
    21、630
    【解析】
    分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
    详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
    甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
    相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
    则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
    乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
    甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
    所以甲车从B地向A地行驶了120×2.25=270千米,
    当乙车到达A地时,甲车离A地的距离为900-270=630千米.
    点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
    22、8
    【解析】
    先根据为图象端点,得到Q此时与B点重合,故得到AB=4,再根据,根据,得到,从而得到,再代入即可求出x,过点作于.设,根据,利用三角函数表示出,,故在中,利用得到方程即可求出m的值.
    【详解】
    解∵为图象端点,
    ∴与重合,
    ∴.
    ∵四边形为菱形,,
    ∴,此时,
    ∵=
    ∴,即.
    ∴当时,,即;
    过点作于.设.
    ∵,
    ∴,.
    在中,
    ∴,即,
    ∴,即.
    故答案为:8;.
    此题主要考查菱形的动点问题,解题的关键是熟知菱形的性质、勾股定理及解直角三角形的方法.
    23、
    【解析】
    分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.
    详解:依照题意画出图形,如图所示.
    在Rt△AOB中,AB=2,OB=,
    ∴OA==1,
    ∴AC=2OA=2,
    ∴S菱形ABCD=AC•BD=×2×2=2.
    故答案为2.
    点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)且;(3)或
    【解析】
    (1)开口方向向上,即m-1>0,然后求解即可;
    (2)当与x轴有两个交点,即对应的一元二次方程的判别式大于零;
    (3)当与x轴有一个交点,即对应的一元二次方程的判别式等于零或者本身就是一次函数.
    【详解】
    解:(1)∵,
    ∴.
    (2)且,

    ∴且.
    (3)或,
    ∴或.
    本题考查了二次函数和一元二次方程的关系,特别是与x轴交点的个数与方程的判别式的关系是解答本题的关键.
    25、(1)众数是7,中位数是7;(2)乙,理由见解析
    【解析】
    (1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;
    (2)易知=7,=7,=6.3,方差越小,成绩越稳定.根据方差的意义不难判断.
    【详解】
    (1)甲运动员测试成绩中7出现最多,故甲的众数为7;
    甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,
    ∴甲的中位数为=7,
    ∴甲测试成绩的众数和中位数都是7分;
    (2)=×(7+6+8+7+7+5+8+7+8+7)=7,
    =×(6+6+7+7+7+7+7+7+8+8)=7,
    =×(5×2+6×4+7×3+8×1)=6.3,
    ∵=,S甲2>S乙2,
    ∴选乙运动员更合适.
    本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.
    26、(1) (2)证明见解析
    【解析】
    试题分析:(1)由△ABE∽△ECG,得到AB:EC=BE:GC,从而求得GC的长即可求得S△GEC;
    (2)取AB的中点H,连接EH,利用ASA证明△AHE≌△ECF,从而得到AE=EF;
    试题解析:(1)∵AB=BC=2,点E为BC的中点,∴BE=EC=1,∵AE⊥EF,∴△ABE∽△ECG,∴AB:EC=BE:GC,即:2:1=1:GC,解得:GC=,∴S△GEC=•EC•CG=×1×=;
    (2)取AB的中点H,连接EH,∵ABCD是正方形,AE⊥EF,∴∠1+∠AEB=90°,∠2+∠AEB=90°,∴∠1=∠2,∵BH=BE,∠BHE=45°,且∠FCG=45°,∴∠AHE=∠ECF=135°,AH=CE,∴△AHE≌△ECF,∴AE=EF;
    考点:1.全等三角形的判定与性质;2.正方形的性质;3.综合题.
    题号





    总分
    得分
    目的地
    费用
    车型
    A村(元/辆)
    B村(元/辆)
    大货车
    800
    900
    小货车
    400
    600

    相关试卷

    2024年内蒙古呼伦贝尔市名校数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024年内蒙古呼伦贝尔市名校数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年内蒙古呼伦贝尔市、兴安盟九上数学开学复习检测模拟试题【含答案】:

    这是一份2024年内蒙古呼伦贝尔市、兴安盟九上数学开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年内蒙古满洲里市九上数学开学检测试题【含答案】:

    这是一份2024-2025学年内蒙古满洲里市九上数学开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map