内蒙古自治区鄂尔多斯市东胜区第二中学2025届九年级数学第一学期开学考试模拟试题【含答案】
展开
这是一份内蒙古自治区鄂尔多斯市东胜区第二中学2025届九年级数学第一学期开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)多项式的一个因式为( )
A.B.C.D.
2、(4分)正方形的一个内角度数是
A.B.C.D.
3、(4分)已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是( )
A.y1>y2B.y1<y2C.y1=y2D.不能确定
4、(4分)如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若,则S1+S2的值为( )
A.3B.4C.5D.6
5、(4分)下列运算结果正确的是( )
A.=﹣9B.=2C.D.
6、(4分)正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )
A.B.C.D.
7、(4分)如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有( )
A.1个B.2个C.4个D.3个
8、(4分)下列式子是最简二次根式的是()
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知∠1=100°,∠2=140°,那么∠3=_____度.
10、(4分)函数向右平移1个单位的解析式为__________.
11、(4分)一组数据1,3,5,7,9的方差为________.
12、(4分)小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.
13、(4分)某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下,那么该苹果幼树移植成活的概率估计值为______.(结果精确到0.1)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标.
(2)判断以A,B,A1,B1为顶点的四边形的形状,请直接在答卷上填写答案.
15、(8分)化简与解方程:
(1).
(2)
16、(8分)解方程 (2x-1)2=3-6x.
17、(10分)已知:如图1,在平面直角坐标系中,直线:与坐标轴分别相交于点A、B与:相交于点C.
(1)求点C的坐标;
(2)若平行于y轴的直线交于直线于点E,交直线于点D,交x轴于点M,且,求a的值;
18、(10分)为积极响应新旧功能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为35万元时,年销售量为550台;每台售价为40万元时,年销售量为500台.假定该设备的年销售量(单位:台)和销售单价(单位:万元)成一次函数关系.
(1)求年销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于60万元,如果该公司想获得8000万元的年利润,则该设备的销售单价应是多少万元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为__________.
20、(4分)若二次函数y=ax2+bx的图象开口向下,则a可以为_________(写出一个即可).
21、(4分)如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。
22、(4分)一次函数y=2x-1的图象在轴上的截距为______
23、(4分)计算的结果是_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
.
25、(10分)解一元二次方程.
(1) (2)
26、(12分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:
(1) (2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接提取公因式进而合并同类项得出即可.
【详解】
则一个因式为:.
故选C.
此题主要考查了提取公因式法分解因式,正确合并同类项是解题关键.
2、D
【解析】
正方形的内角和为,正方形内角相等,.
【详解】
解:根据多边形内角和公式:可得:正方形内角和,
正方形四个内角相等
正方形一个内角度数.
故选:.
本题考查了多边形内角和定理、正多边形每个内角都相等的性质应用,是一道基础几何计算题.
3、A
【解析】
因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.
【详解】
解:∵k=﹣3<0,
∴y随x的增大而减小,
∵﹣1<2,
∴y1>y2 ,
故选A.
本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.
4、B
【解析】
首先根据反比例函数中k的几何意义,可知S矩形ACOD=S矩形BEOF=|k|=3,又S阴影=1,则S1=S矩形ACOD-S阴影=2,S2=S矩形BEOF-S阴影=2,从而求出S1+S2的值.
【详解】
解:∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,
∴S矩形ACOD=S矩形BEOF=3,
又∵S阴影=1,
∴S1=S2=3-1=2,
∴S1+S2=1.
故选:B.
主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
5、B
【解析】
解:因为=9,所以A错误,
因为,所以B正确,
因为,所以C错误,
因为,所以D错误,故选B.
6、B
【解析】
通过一次函数的定义即可解答.
【详解】
解:已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,
故k>0,
即一次函数y=x+k的图象过一二三象限,
答案选B.
本题考查一次函数的定义与性质,熟悉掌握是解题关键.
7、D
【解析】
根据矩形性质得出∠A=∠D=90°,AB=CD,AD∥BC,推出∠AEB=∠EBC,∠DEC=∠ECB,求出∠AEB=∠ABE,∠DCE=∠DEC,推出AB=AE,DE=DC,推出 AE=DE,根据SAS推出△ABE≌△DCE,推出BE=CE即可.
【详解】
∵四边形ABCD是矩形,
∴∠A=∠D=90°,AB=CD,AD∥BC,
∴∠AEB=∠EBC,∠DEC=∠ECB,
∵BE、CE分别平分∠ABC和∠DCB,
∴∠ABE=∠EBC,∠DCE=∠ECB,
∴∠AEB=∠ABE,∠DCE=∠DEC,
∴AB=AE,DE=DC,
∴AE=DE,
∴△ABE和△DCE都是等腰直角三角形,
在△ABE和△DCE中,
,
∴△ABE≌△DCE(SAS),
∴BE=CE,∴①②③都正确,
故选D.
此题考查全等三角形的判定与性质,等腰直角三角形,等边三角形的判定,解题关键在于掌握各判定定理.
8、A
【解析】
利用最简二次根式的定义判断即可
【详解】
解:A. 是最简二次根式;
B. 不是最简二次根式;
C. 不是最简二次根式;
D. 不是最简二次根式。
故选:A
本题考查的是最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、60°.
【解析】
该题是对三角形外角性质的考查,三角形三个外角的和为360°,所以∠4=360°-∠1-∠2=360°-100°-140°=120°,∠3=180°-120=60度.
【详解】
解:∵∠1=∠3+(180°-∠2),
∴∠3=∠1-(180°-∠2)=100°-(180°-140°)=60°.
故答案为:60°.
此题结合了三角形的外角和和邻补角的概念,要注意三角形的外角和与其它多边形一样,都是360°.
10、或
【解析】
根据“左加右减,上加下减”的规律即可求得.
【详解】
解:∵抛物线向右平移1个单位
∴抛物线解析式为或.
本题考查的是二次函数,熟练掌握二次函数的平移是解题的关键.
11、8
【解析】
根据方差公式S2= 计算即可得出答案.
【详解】
解:∵ 数据为1,3,5,7,9,
∴平均数为:=5,
∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2] =8.
故答案为8.
本题考查方差的计算,熟记方差公式是解题关键.
12、1
【解析】
将这7个数按大小顺序排列,找到最中间的数即为中位数.
【详解】
解:这组数据从大到小为:27,1,1,1,42,42,46,
故这组数据的中位数1.
故答案为1.
此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算,难度一般.
13、0.1
【解析】
概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.
【详解】
解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
∴这种苹果幼树移植成活率的概率约为0.1,
故答案为:0.1.
此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
三、解答题(本大题共5个小题,共48分)
14、(1)A1(3,4)、B1(0,2);(2)四边形ABA1B1是平行四边形.
【解析】
(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;
(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.
【详解】
解:(1)如图图所示,△OA1B1即为所求,
A1(3,4)、B1(0,2);
(2)由图可知,OB=OB1=2、OA=OA1==5,
∴四边形ABA1B1是平行四边形.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.
15、(1);(2)x=1.
【解析】
根据分式的加减法则进行计算即可
【详解】
解:(1)原式=
=
=
= ;
(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,
解得:x=1,
检验:当x=1时,x﹣2=﹣1≠0,
所以分式方程的解为x=1.
本题考查分式的加减法,掌握运算法则是解题关键
16、
【解析】
先移项,然后用因式分解法解一元二次方程即可.
【详解】
解:(2x-1)2=-3(2x-1)
(2x-1)2+3(2x-1)=0
(2x-1)[ (2x-1)+3]=0
(2x-1)( (2x+2) =0
x1=,x2=-1
此题主要考查解一元二次方程,熟练掌握解一元二次方程的方法是解题关键.
17、 (1) C坐标为;(2) 2或1.
【解析】
(1)联立两直线解析式得到方程组,求出方程组的解即可确定出的坐标;
(2)将代入两直线方程求出对应的值,确定出与的纵坐标,即与的长,由求出的长,根据,求出的长,将代入两直线方程,求出与对应的横坐标,相减的绝对值等于的长列出关于的方程,求出方程的解即可求出的值.
【详解】
解:(1)联立两直线解析式得:,
解得:,
则点C坐标为;
(2)由题意:
解得或1.
此题属于一次函数综合题,主要考查了两直线的交点问题,以及一次函数图象上点的坐标特征.解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
18、(1)年销售量与销售单价的函数关系式为;(2)该设备的销售单价应是50万元/台.
【解析】
(1)设年销售量与销售单价的函数关系式为,根据待定系数法确定函数关系式即可求解;
(2)设此设备的销售单价为万元/台,每台设备的利润为万元,销售数量为台,根据题意列车一元二次方程即可求解.
【详解】
(1)设年销售量与销售单价的函数关系式为,
将、代入,得:
,…
解得:,
∴年销售量与销售单价的函数关系式为;
(2)设此设备的销售单价为万元/台,
则每台设备的利润为万元,销售数量为台,
根据题意得:,
整理,得:,解得:,,
∵此设备的销售单价不得高于60万元,∴.
答:该设备的销售单价应是50万元/台.
此题主要考查一次函数与一元二次方程的应用,解题的关键是根据题意得到等量关系进行列方程求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.
【详解】
解:根据勾股定理可得:
,即x2-8x+16+x2-4x+4= x2,
解得:x1=2(不合题意舍去),x2=10,
10-2=8(尺),
10-4=6(尺).
答:门高8尺,门宽6尺,对角线长10尺.
故答案为: .
本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解题的关键.
20、a=−2(答案不唯一)
【解析】
由图象开口向下,可得a<2.
【详解】
解:∵图象开口向下,
∴a<2,
∴a=−2,(答案不唯一).
故答案为:−2.
本题考查了二次函数的性质,注意二次函数图象开口方向与系数a的关系.
21、
【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.
【详解】
∵四边形OABC是矩形,
∴∠B=90°,
∵BD=BE=1,
∴∠BED=∠BDE=45°,
∵沿直线DE将△BDE翻折,点B落在点B′处,
∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,
∴∠BEB′=∠BDB′=90°,
∵点B的坐标为(3,2),
∴点B′的坐标为(2,1).
故答案为:(2,1).
此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形
22、-1
【解析】
根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.
【详解】
解:∵一次函数y=2x-1中b=-1,
∴图象在轴上的截距为-1.
故答案为:-1.
本题考查了一次函数图象上点的坐标特征.
23、
【解析】
应用二次根式的乘除法法则()及同类二次根式的概念化简即可.
【详解】
解:
故答案为:
本题考查了二次根式的化简,综合运用二次根式的相关概念是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、;
【解析】
(1)根据二次根式乘除法和减法可以解答本题;
(2)先利用平方差公式和完全平方公式计算,然后合并即可.
【详解】
原式
;
原式
.
25、 (1)x1=3,x2=6; (2) x1=2+,x2=2-.
【解析】
(1)利用因式分解法即可求解;
(2)利用配方法解方程即可求解.
【详解】
(1)
∴
∴
∴,,
解得:x1=3,x2=6;
(2)
∴
∴,
∴,
解得x1=2+,x2=2-.
此题分别考查了一元二次方程的几种解法,解题的关键是根据不同的方程的形式选择最佳方法解决问题.
26、①;②
【解析】
(1)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
(2)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
【详解】
(1)x2-7x-18=(x+2)(x-9);
(2)x2+12xy-13y2=(x+13y)(x-y).
本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份内蒙古自治区鄂尔多斯市东胜区第二中学2024年九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份内蒙古鄂尔多斯市东胜区第二中学2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届内蒙古鄂尔多斯市东胜区数学九年级第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。