内蒙古自治区通辽市开鲁县2025届数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则对四边形EFGH表述最确切的是( )
A.四边形EFGH是矩形B.四边形EFGH是菱形
C.四边形EFGH是正方形D.四边形EFGH是平行四边形
2、(4分)下列从左边到右边的变形,是因式分解的是
A.B.
C.D.
3、(4分)下列函数中,一次函数是( ).
A.B.C.D.
4、(4分)以下四个命题正确的是
A.平行四边形的四条边相等
B.矩形的对角线相等且互相垂直平分
C.菱形的对角线相等
D.一组对边平行且相等的四边形是平行四边形
5、(4分)如图,在Rt△ABC中,AC=6,BC=8,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为( )
A.6B.C.5D.
6、(4分)甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么( )
A.甲的波动比乙的波动大B.乙的波动比甲的波动大
C.甲,乙的波动大小一样D.甲,乙的波动大小无法确定
7、(4分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是( )
A.甲B.乙C.丙D.丁
8、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到AB的距离为( )
A.4cmB.3cmC.2cmD.1cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为_____.
10、(4分)在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=_____°.
11、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了100米,则山坡的高度BC为_____米.
12、(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E,若AB=8,AD=6,则EC=_____________.
13、(4分)若关于x的方程-3有增根,则a=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:
(1)将条形统计图补充完整;
(2)抽查的学生劳动时间的众数为______,中位数为_______;
(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?
15、(8分)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
16、(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)
(1)写出这15人该月加工零件数的平均数、中位数和众数;
(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.
17、(10分)如图,矩形中,点分别在边与上,点在对角线上,,.
求证:四边形是平行四边形.
若,,,求的长.
18、(10分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.
(1)若该城市某户6月份用水18吨,该户6月份水费是多少?
(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
20、(4分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
21、(4分)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距__________m
22、(4分)不等式的正整数解为______.
23、(4分)在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:
老师说:“小楠、小曼的作法都正确”
请回答:小楠的作图依据是______;
小曼的作图依据是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”.如图为点、的“极好菱形”的一个示意图.已知点的坐标为,点的坐标为.
(1)点,,中,能够成为点、的“极好菱形”的顶点的是 .
(2)若点、的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标.
(3)如果四边形是点、的“极好菱形”.
①当点的坐标为时,求四边形的面积.
②当四边形的面积为8,且与直线有公共点时,直接写出的取值范围.
25、(10分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评.A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:
表1 演讲答辩得分表(单位:分)
表2 民主测评票数统计表(单位:张)
规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;
民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;
综合得分=演讲答辩得分×(1﹣a)+民主测评得分×a(0.5≤a≤0.8).
(1)当a=0.6时,甲的综合得分是多少?
(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
26、(12分)如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求m和b的数量关系;
(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;
(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据三角形中位线定理得到EH=BC,EH∥BC,得到四边形EFGH是平行四边形,根据菱形的判定定理解答即可.
【详解】
解:∵点E、H分别是AB、AC的中点,
∴EH=BC,EH∥BC,
同理,EF=AD,EF∥AD,HG=AD,HG∥AD,
∴EF=HG,EF∥HD,
∴四边形EFGH是平行四边形,
∵AD=BC,
∴EF=EH,
∴平行四边形EFGH是菱形,
故选B.
本题考查的是中点四边形的概念和性质、掌握三角形中位线定理、菱形的判定定理是解题的关键.
2、B
【解析】
根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法;因式分解的要求:分解要彻底,小括号外不能含整式加减形式.
【详解】
A选项,利用提公因式法可得: ,因此A选项错误,
B选项,根据立方差公式进行因式分解可得:,因此B选项正确,
C选项,不属于因式分解,
D选项,利用提公因式法可得:,因此D选项错误,
故选B.
本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
3、A
【解析】
根据一次函数的定义分别进行判断即可.
【详解】
解:.是一次函数,故正确;
.当时,、是常数)是常函数,不是一次函数,故错误;
.自变量的次数为,不是一次函数,故错误;
.属于二次函数,故错误.
故选:.
本题主要考查了一次函数的定义,一次函数的定义条件是:、为常数,,自变量次数为1.
4、D
【解析】
根据平行四边形的性质与判定、矩形的性质和菱形的性质判断即可.
【详解】
解:A、菱形的四条边相等,错误;
B、矩形的对角线相等且平分,错误;
C、菱形的对角线垂直,错误;
D、一组对边平行且相等的四边形是平行四边形,正确.
故选D.
本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质和菱形的性质,难度一般.
5、D
【解析】
连接CD,判断四边形是矩形,得到,在根据垂线段最短求得最小值.
【详解】
如图,连接CD,
∵,,
∴四边形是矩形,,
由垂线段最短可得时线段的长度最小,
∵;
∴;
∵四边形是矩形
∴
故选:.
本题考查了矩形的判定和性质,勾股定理和直角三角形中面积的代换,解题的关键在于连接CD,判断四边形是矩形.
6、A
【解析】
根据方差的定义,方差越小数据越稳定,故可选出正确选项.
【详解】
解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.
故选A.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7、B
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
解:∵s2丁>s2丙>s2甲>s2乙,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
∴乙最稳定.
故选:B.
本题考查了方差,正确理解方差的意义是解题的关键.
8、C
【解析】
作DE⊥AB于E,根据题意求出CD,根据角平分线的性质求出DE.
【详解】
解:作DE⊥AB于E,
∵BD=2CD,BC=6,
∴CD=2,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DE=CD=2,
即点D到AB的距离为2cm,
故选:C.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(a+3,b+2)
【解析】
找到一对对应点的平移规律,让点P的坐标也作相应变化即可.
【详解】
点B的坐标为(-2,0),点B′的坐标为(1,2);
横坐标增加了1-(-2)=3;纵坐标增加了2-0=2;
∵△ABC上点P的坐标为(a,b),
∴点P的横坐标为a+3,纵坐标为b+2,
∴点P变换后的对应点P′的坐标为(a+3,b+2).
解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
10、1.
【解析】
根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,∠BDC=∠DBC=34°.
∠BCA=∠DCO=90°﹣34°=56°.
∵EF垂直平分BC,
∴∠ECF=∠DBC=34°.
∴∠ECA=56°﹣34°=1°.
故答案为1.
本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.
11、1
【解析】
直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
【详解】
由题意可得:AB=100m,∠A=30°,
则BC=AB=1(m).
故答案为:1.
此题主要考查了解直角三角形的应用,正确得出BC与AB的数量关系是解题关键.
12、
【解析】
连接EA,如图,利用基本作图得到MN垂直平分AC,所以EC=EA,设CE=x,则AE=x,DE=8-x,根据勾股定理得到62+(8-x)2=x2,然后解方程求出x即可.
【详解】
解:连接EA,如图,
由作图得到MN垂直平分AC,
∴EC=EA,
∵四边形ABCD为矩形,
∴CD=AB=8,∠D=90°,
设CE=x,则AE=x,DE=8-x,
在Rt△ADE中,62+(8-x)2=x2,解得x=,
即CE的长为.
故答案为.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
13、1
【解析】
去分母后把x=2代入,即可求出a的值.
【详解】
两边都乘以x-2,得
a=x-1,
∵方程有增根,
∴x-2=0,
∴x=2,
∴a=2-1=1.
故答案为:1.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析(2)1.5、1.5(3)216
【解析】
(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数;
(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;
(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.
【详解】
(1)根据题意得:30÷30%=100(人),
∴学生劳动时间为“1.5小时”的人数为100−(12+30+18)=40(人),
补全统计图,如图所示:
(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,
故答案为:1.5、1.5;
(3)1200×18%=216,
答:估算该校学生参加义务劳动2小时的有216人
此题考查扇形统计图,条形统计图,中位数,众数,解题关键在于看懂图中数据
15、(1)甲队单独完成需60天,乙队单独完成这项工程需要90天;
(2)工程预算的施工费用不够,需追加预算4万元.
【解析】
(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;
(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.
【详解】
(1)解:设乙队单独完成这项工程需要天,则甲队单独完成需要填;
解得:
经检验,x=90是原方程的根.
则(天)
答:甲、乙两队单独完成这项工程分别需60天和90天.
(2)设甲、乙两队合作完成这项工程需要y天,
则有y(+)=1.
解得y=36.
需要施工费用:36×(8.4+5.6)=504(万元).
∵504>500.
∴工程预算的施工费用不够用,需追加预算4万元.
16、(1)平均数为26件,中位数为24件,众数为24件;(2)合理.
【解析】
(1)先根据加权平均数公式即可求得平均数,再将表中的数据按照从大到小的顺序排列,根据中位数和众数的概念求解即可;
(2)应根据(1)中求出的中位数和众数综合考虑.
【详解】
解:(1)平均数==26(件),
将表中的数据按照从大到小的顺序排列,可得出第8名工人的加工零件数为24件,且零件加工数为24的工人最多,
故中位数为:24件,众数为:24件.
答:这15人该月加工零件数的平均数为26件,中位数为24件,众数为24件.
(2)24件较为合理,24既是众数,也是中位数,且24小于人均零件加工数,是大多数人能达到的定额.
本题主要考查了加权平均数、众数和中位数的概念:(1)一组数据中出现次数最多的数据叫做众数.(2)将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
17、(1)证明见详解;(2)1
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
解:(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,
∴△AEG≌△CFH,
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)如图,连接EF,AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF=AE,
设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴42+(8-x)2=x2,
解得x=1,
∴AE=1.
此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.
18、(1)该户6月份水费是45元;(2)y=3.3x-1.
【解析】
(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;
(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.
【详解】
解:(1)根据题意:该户用水18吨,按每吨2.5元收费,
2.5×18=45(元),
答:该户6月份水费是45元;
(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,
则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,
应缴水费y=2.5×20+3.3×(x-20),
整理后得:y=3.3x-1,
答:y关于x的函数关系式为y=3.3x-1.
本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1或1或1
【解析】
本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.
【详解】
试题分析:当∠APB=90°时(如图1),
∵AO=BO,
∴PO=BO,
∵∠AOC=60°,
∴∠BOP=60°,
∴△BOP为等边三角形,
∵AB=BC=4,
∴;
当∠ABP=90°时(如图1),
∵∠AOC=∠BOP=60°,
∴∠BPO=30°,
∴,
在直角三角形ABP中,
,
如图3,∵AO=BO,∠APB=90°,
∴PO=AO,
∵∠AOC=60°,
∴△AOP为等边三角形,
∴AP=AO=1,
故答案为或或1.
考点:勾股定理.
20、或或1
【解析】
如图所示:
①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
③当PA=PE时,底边AE=1;
综上所述:等腰三角形AEP的对边长为或或1;
故答案为或或1.
21、
【解析】
两人从同一地点同时出发,一人以30m/min的速度向北直行
【详解】
解:设10min后,OA=30×10=300(m),
OB=30×10=300(m),
甲乙两人相距AB=(m).
故答案为:.
本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.
22、1
【解析】
先求出不等式的解集,然后根据解集求其非正整数解.
【详解】
解:∵,
∴,
∴正整数解是:1;
故答案为:1.
本题考查了一元一次不等式的解法,解不等式的步骤有:去分母、去括号、移项、合并同类项、系数化成1,注意,系数化为1时要考虑不等号的方向是否改变.
23、同位角相等,两直线平行或垂直于同一直线的两条直线平行 内错角相等,两直线平行
【解析】
由平行线的判定方法即可得到小楠、小曼的作图依据.
【详解】
解:∵∠B=∠D=90°,
∴AB//CD(同位角相等,两直线平行);
∵∠ABC=∠DCB=90°,
∴AB//CD(内错角相等,两直线平行),
故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.
本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)这个正方形另外两个顶点的坐标为、;(3)①;②的取值范围是
【解析】
(1)根据“极好菱形”的定义判断即可;
(2)根据点、的“极好菱形”为正方形求解即可;
(3)①四边形MNPQ是点M、P的“极好菱形”, 点的坐标为时,求四边形是正方形,求其面积即可;②根据菱形的面积公式求得菱形另一条对角线的长,再由与直线有公共点,求解即可.
【详解】
解:(1)如图1中,观察图象可知:、能够成为点,的“极好菱形”顶点.
故答案为:,;
(2)如图2所示:
∵点的坐标为,点的坐标为,
∴.
∵“极好菱形”为正方形,其对角线长为,
∴这个正方形另外两个顶点的坐标为、
(3)①如图2所示:
∵,,,
∴,.
∵四边形是菱形,
∴四边形是正方形.
∴.
②如图3所示:
∵点的坐标为,点的坐标为,
∴,
∵四边形的面积为8,
∴,即,
∴,
∵四边形是菱形,
∴,,,
作直线,交轴于,
∵,
∴,
∴,
∵和在直线上,
∴,
∴是等腰直角三角形,
∴,
∴与重合,即在轴上,
同理可知:在轴上,且,
由题意得:四边形与直线有公共点时,的取值范围是.
本题考查了菱形的性质,根据题目中所给的知识获取有用的信息是解此题的关键,本题综合性较强,有一定的难度.
25、(1)89分(2)当0.5≤a<0.75时,甲的综合得分高,0.75<a≤0.8时,乙的综合得分高
【解析】
(1)由题意可知:分别计算出甲的演讲答辩得分以及甲的民主测评得分,再将a=0.6代入公式计算可以求得甲的综合得分;
(2)同(1)一样先计算出乙的演讲答辩得分以及乙的民主测评得分,则乙的综合得分=89(1−a)+88a,甲的综合得分=92(1−a)+87a,再分别比较甲、乙的综合得分,甲的综合得分高时即当甲的综合得分>乙的综合得分时,可以求得a的取值范围;同理甲的综合得分高时即当甲的综合得分<乙的综合得分时,可以求得a的取值范围.
【详解】
(1)甲的演讲答辩得分==92(分),
甲的民主测评得分=40×2+7×1+3×0=87(分),
当a=0.6时,甲的综合得分=92×(1−0.6)+87×0.6=36.8+52.2=89(分);
答:当a=0.6时,甲的综合得分是89分;
(2)∵乙的演讲答辩得分==89(分),
乙的民主测评得分=42×2+4×1+4×0=88(分),
∴乙的综合得分为:89(1−a)+88a,甲的综合得分为:92(1−a)+87a,
当92(1−a)+87a>89(1−a)+88a时,即有a<,
又0.5≤a≤0.8,
∴0.5≤a<0.75时,甲的综合得分高;
当92(1−a)+87a<89(1−a)+88a时,即有a>,
又0.5≤a≤0.8,
∴0.75<a≤0.8时,乙的综合得分高.
答:当0.5≤a<0.75时,甲的综合得分高,0.75<a≤0.8时,乙的综合得分高.
本题考查的是平均数的求法.同时还考查了解不等式,本题求a的范围时要注意“0.5≤a≤0.8”这个条件.
26、(1)b=3m;(2)个单位长度;(3)P(0,3)或(2,2)
【解析】
(1)易证△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得点D坐标,代入解析式可求m和b的数量关系;
(2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;
(3)分两种情况讨论,由等腰直角三角形的性质可求点P坐标.
【详解】
解:(1)直线y=﹣x+b中,x=0时,y=b,
所以,B(0,b),又C(m,0),
所以,OB=b,OC=m,
在和中
∴点
(2)∵m=1,
∴b=3,点C(1,0),点D(4,1)
∴直线AB解析式为:
设直线BC解析式为:y=ax+3,且过(1,0)
∴0=a+3
∴a=-3
∴直线BC的解析式为y=-3x+3,
设直线B′C′的解析式为y=-3x+c,把D(4,1)代入得到c=13,
∴直线B′C′的解析式为y=-3x+13,
当y=3时,
当y=0时,
∴△BCD平移的距离是个单位.
(3)当∠PCD=90°,PC=CD时,点P与点B重合,
∴点P(0,3)
如图,当∠CPD=90°,PC=PD时,
∵BC=CD,∠BCD=90°,∠CPD=90°
∴BP=PD
∴点P是BD的中点,且点B(0,3),点D(4,1)
∴点P(2,2)
综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.
本题考查一次函数综合题、等腰直角三角形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移性质解决问题,属于中考压轴题.
题号
一
二
三
四
五
总分
得分
选手
甲
乙
丙
丁
方差(s2)
0.020
0.019
0.021
0.022
每人加工零件数
54
45
30
24
21
12
人 数
1
1
2
6
3
2
A
B
C
D
E
甲
90
92
94
95
88
乙
89
86
87
94
91
“好”票数
“较好”票数
“一般”票数
甲
40
7
3
乙
42
4
4
内蒙古通辽市奈曼旗2024年九上数学开学统考模拟试题【含答案】: 这是一份内蒙古通辽市奈曼旗2024年九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古通辽市开鲁县2025届数学九年级第一学期开学调研模拟试题【含答案】: 这是一份内蒙古通辽市开鲁县2025届数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古通辽市2025届数学九上开学复习检测试题【含答案】: 这是一份内蒙古通辽市2025届数学九上开学复习检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。