山东省滨州市阳信县2025届九年级数学第一学期开学调研试题【含答案】
展开
这是一份山东省滨州市阳信县2025届九年级数学第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中,原命题和逆命题都是真命题的个数是( )
①两条对角线互相平分的四边形是平行四边形;
②两条对角线相等的四边形是矩形;
③菱形的两条对角线成互相垂直平分;
④两条对角线互相垂直且相等的四边形是正方形.
A.4B.3C.2D.1
2、(4分)在一个不透明的盒子里装有2个红球和1个黄球,每个球除颜色外都相同,从中任意摸出2个球。下列事件中,不可能事件是( )
A.摸出的2个球都是红球
B.摸出的2个球都是黄球
C.摸出的2个球中有一个是红球
D.摸出的2个球中有一个是黄球
3、(4分)化简的结果是( )
A.B.C.D.
4、(4分)如图,在矩形中,对角线和相交于点,点分别是的中点.若,则的周长为( )
A.6B.C.D.
5、(4分)如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为( )
A.6B.5C.4D.3
6、(4分)用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是( )
A.90°B.60°C.45°D.30°
7、(4分)下列多项式中,可以提取公因式的是( )
A.ab+cdB.mn+m2
C.x2-y2D.x2+2xy+y2
8、(4分)如图,在正方形ABCD中,AB=10,点E、F是正方形内两点,AE=FC=6,BE=DF=8,则EF的长为( )
A.B.C.D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算()•()的结果是_____.
10、(4分)已知:一组数据,,,,的平均数是22,方差是13,那么另一组数据,,,,的方差是__________.
11、(4分)不等式的正整数解是______.
12、(4分)已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.
13、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,是正方形的边上的动点,是边延长线上的一点,且,,设,.
(1)当是等边三角形时,求的长;
(2)求与的函数解析式,并写出它的定义域;
(3)把沿着直线翻折,点落在点处,试探索:能否为等腰三角形?如果能,请求出的长;如果不能,请说明理由.
15、(8分)在平面直角坐标系中,直线与轴、轴分别相交于A、B两点,求AB的长及△OAB的面积.
16、(8分)如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.
(1)请找出图中一对相似三角形,并证明;
(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.
17、(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)若方程有一个根是5,求k的值.
18、(10分)(1)若k是正整数,关于x的分式方程的解为非负数,求k的值;
(2)若关于x的分式方程总无解,求a的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,将长方形纸片ABCD进行折叠,∠FEH=70°,则∠BHE=_______.
20、(4分)如图,在中,角是边上的一点,作垂直, 垂直,垂足分别为,则的最小值是______.
21、(4分)如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,,,将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E. 点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边,则符合条件的点M的坐标为______.
22、(4分)计算:(﹣1)0+(﹣)﹣2=_____.
23、(4分)如图所示,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠C的度数是____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.
(1)求证:△ABG≌△AFG;
(2)判断BG与CG的数量关系,并证明你的结论;
(3)作FH⊥CG于点H,求GH的长.
25、(10分)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.
(1)当AB=2时,求GC的长;
(2)求证:AE=EF.
26、(12分)课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:
,
,
因为>,所以>,则有3(3x−1)-6,
去括号得,2x+8>9x-3-6,
移项得,2x−9x>-3-6−8,
合并同类项得,−7x>−17,
把x的系数化为1得,x< .
故它的正整数解为:1和2.
此题考查解一元一次不等式,一元一次不等式的整数解,解题关键在于掌握运算法则
12、(1,0)
【解析】
试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标
试题解析:∵方程组的解为,
∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).
考点:一次函数与二元一次方程(组).
13、70%
【解析】
利用合格的人数即50-10-5=35人,除以总人数即可求得.
【详解】
解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.
故答案是:70%.
本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
三、解答题(本大题共5个小题,共48分)
14、(1);(1);(3)答案见解析.
【解析】
(1)当△BEF是等边三角形时,有∠ABE=∠ABC-∠EBC=90°-60°=30°,则可解Rt△ABE,求得BF即BE的长.
(1)作EG⊥BF,垂足为点G,则四边形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.即y1=(y-x)1+111.故可求得y与x的关系.
(3)当把△ABE沿着直线BE翻折,点A落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF成为等腰三角形,必须使A'B=A'F=AB=11,有FA′=EF-A′E=y-x=11,故可由(1)得到的y与x的关系式建立方程组求得AE的值.
【详解】
解:(1)当是等边三角形时,,
∵,
∴,
∴;
(1)作,垂足为点,
根据题意,得,,.
∴.
∴所求的函数解析式为;
(3)∵,
∴点落在上,
∴,,
∴要使成为等腰三角形,必须使.
而,,
∴,由(1)关系式可得:,
整理得,
解得,
经检验:都原方程的根,
但不符合题意,舍去,
所以当时,为等要三角形.
本题利用了等边三角形和正方形、矩形、等腰三角形的性质,勾股定理求解.
15、,1
【解析】
根据两点距离公式、三角形的面积公式求解即可.
【详解】
解:令y=0,
解得
令x=0,
解得
∴A、B两点坐标为(3,0)、(0,6)
∴
∴
故答案为:,1.
本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.
16、(1)△DPE∽△QDA,证明见解析;(2)DP=2或5
【解析】
(1)由∠ADC=∠DEP=∠A=90可证明△ADQ∽△EPD;
(2)若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,当△ADQ∽△EPQ时,设EQ=x,则EP=2x,则DE=2−x,由△ADQ∽△EPD可得,可求出x的值,则DP可求出;同理当△ADQ∽△EQP时,设EQ=2a,则EP=a,可得,可求出a的值,则DP可求.
【详解】
(1)△ADQ∽△EPD,证明如下:
∵PE⊥DQ,
∴∠DEP=∠A=90,
∵∠ADC=90,
∴∠ADQ+∠EDP=90,∠EDP+∠DPE=90,
∴∠ADQ=∠DPE,
∴△ADQ∽△EPD;
(2)∵AB=4,点Q为AB的中点,
∴AQ=BQ=2,
∴DQ=,
∵∠PEQ=∠A=90,
∴若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,
①当△ADQ∽△EPQ时,,
设EQ=x,则EP=2x,则DE=2−x,
由(1)知△ADQ∽△EPD,
∴,
∴,
∴x=
∴DP==5;
②当△ADQ∽△EQP时,设EQ=2a,则EP=a,
同理可得,
∴a=,
DP=.
综合以上可得DP长为2或5,使得以点P,E,Q为顶点的三角形与△ADQ相似.
本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.
17、(1)证明见解析;(2)k=4或k=2.
【解析】
(1)根据根的判别式为1,得出方程有两个不相等的实数根;(2)将x=2代入方程得出关于k的一元二次方程,从而得出k的值.
【详解】
(1)∵△=
=
=,
∴方程有两个不相等的实数根;
(2)∵方程有一个根为2,
∴,
,
∴,.
本题考查了一元二次方程根的判别式,因式分解法解一元二次方程,熟练掌握相关知识是解题的关键.
18、(1);(2)的值-1,2.
【解析】
(1)分式方程去分母转化为整式方程,表示出整式方程的解,由解为非负数求出k的范围,即可确定出正整数k的值;
(2)分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.
【详解】
解:(1)由得:,
化简得:,
因为x是非负数,所以,即,
又是正整数,所以;
(2)去分母得:,即,
若,显然方程无解;
若,,
当时,不存在;
当时,,
综合上述:的值为-1,2.
此题考查了分式方程的解,始终注意分式分母不为0这个条件.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、70°
【解析】
由折叠的性质可得∠DEH=∠FEH=70°,再根据两直线平行,内错角相等即可求得答案.
【详解】
由题意得∠DEH=∠FEH=70°,
∵AD//BC,
∴∠BHE=∠DEH=70°,
故答案为:70°.
本题考查了折叠的性质,平行线的性质,熟练掌握折叠的性质以及平行线的性质是解题的关键.
20、
【解析】
根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
【详解】
连接AP,
四边形AFPE是矩形,
要使EF最小,只要AP最小即可,
过点A作于P,此时AP最小,
在直角三角形中,
由勾股定理得:BC=5,
由三角形面积公式得:
,
即,
故答案为:.
本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.
21、或.
【解析】
由B、D坐标可求得直线BD的解析式,当M点在x轴上方时,则有CM∥AN,则可求出点M的坐标,代入直线BD解析式可求得M点的坐标,当M点在x轴下方时,同理可求得点M点的纵坐标,则可求得M点的坐标;
【详解】
∵,,
∴OA=2,OB=4,
∵将△OAB绕O点顺时针旋转90°得到△OCD,
∴OC=OA=2,OD=OB=4,AB=CD,
可知,,
设直线BD的解析式为,把B、D两点的坐标代入得:,
解得,
∴直线BD的解析式为,
当M点在x轴上方时,则有CM∥AN,即CM∥x轴,
∴点M到x轴的距离等于点C到x轴的距离,
∴M点的纵坐标为2,
在中,令,可得,
∴,
当M点在x轴下方时,M点的纵坐标为-2,
在中,令,可得,
∴,
综上所述,M的坐标为或.
本题主要考查了一次函数的综合,准确利用知识点是解题的关键.
22、5
【解析】
按顺序分别进行0次幂运算、负指数幂运算,然后再进行加法运算即可.
【详解】
(﹣1)0+(﹣)﹣2
=1+4
=5,
故答案为:5.
本题考查了实数的运算,涉及了0指数幂、负整数指数幂,熟练掌握各运算的运算法则是解题的关键.
23、100°.
【解析】
根据直角三角形两锐角互余,平行四边形的性质即可解决问题.
【详解】
∵AF⊥DE,
∴∠AFD=90°,
∵∠DAF=50°,
∴∠ADF=90°﹣50°=40°,
∵DE平分∠ADC,
∴∠ADC=2∠ADF=80°,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠C+∠ADC=180°,
∴∠C=100°
故答案为100°.
本题考查平行四边形的性质、直角三角形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)BG=CG;(3)GH=.
【解析】
(1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;
(2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;
(3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.
【详解】
(1)∵正方形ABCD的边长为6,CE=2DE,
∴DE=2,EC=4,
∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
在Rt△ABG和Rt△AFG中
∵ ,
∴Rt△ABG≌Rt△AFG(HL);
(2)∵Rt△ABG≌Rt△AFG,
∴GB=GF,∠BAG=∠FAG,
∴∠GAE=∠FAE+∠FAG=∠BAD=45°,
设BG=x,则GF=x,CG=BC﹣BG=6﹣x,
在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
∵CG2+CE2=GE2,
∴(6﹣x)2+42=(x+2)2,解得x=3,
∴BG=3,CG=6﹣3=3
∴BG=CG;
(3)由(2)知BG=FG=CG=3,
∵CE=4,
∴GE=5,
∵FH⊥CG,
∴∠FHG=∠ECG=90°,
∴FH∥EC,
∴△FHG∽△ECG,
则=,即=,
解得GH=.
本题考查了四边形的综合问题,解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.
25、(1) (2)证明见解析
【解析】
试题分析:(1)由△ABE∽△ECG,得到AB:EC=BE:GC,从而求得GC的长即可求得S△GEC;
(2)取AB的中点H,连接EH,利用ASA证明△AHE≌△ECF,从而得到AE=EF;
试题解析:(1)∵AB=BC=2,点E为BC的中点,∴BE=EC=1,∵AE⊥EF,∴△ABE∽△ECG,∴AB:EC=BE:GC,即:2:1=1:GC,解得:GC=,∴S△GEC=•EC•CG=×1×=;
(2)取AB的中点H,连接EH,∵ABCD是正方形,AE⊥EF,∴∠1+∠AEB=90°,∠2+∠AEB=90°,∴∠1=∠2,∵BH=BE,∠BHE=45°,且∠FCG=45°,∴∠AHE=∠ECF=135°,AH=CE,∴△AHE≌△ECF,∴AE=EF;
考点:1.全等三角形的判定与性质;2.正方形的性质;3.综合题.
26、方法见解析.
【解析】
【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.
【详解】 ,
,
∵,
∴,
∵, ,
∴ .
【点睛】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份山东省滨州市滨城区2024-2025学年九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省滨州市数学九年级第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省滨州市阳信县2023-2024学年数学九年级第一学期期末联考模拟试题含答案,共9页。试卷主要包含了如图,,相交于点,等内容,欢迎下载使用。