山东省菏泽市曹县2025届数学九年级第一学期开学综合测试模拟试题【含答案】
展开
这是一份山东省菏泽市曹县2025届数学九年级第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数y=x和在同一直角坐标系中的图象大致是( )
A.B.C.D.
2、(4分)将直线y=2x向右平移2个单位,再向上移动4个单位,所得的直线的解析式是( )
A.y=2xB.y=2x+2C.y=2x﹣4D.y=2x+4
3、(4分)点P(-2,3)关于y轴的对称点的坐标是( )
A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)
4、(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为( )
A.x>-3B.x>0C.x0时,过第一、二、三象限,若使其图象恰有两个公共点,必有m>1;
②mm时的解集是x>4,根据同大取大,所以
故答案为
12、1.
【解析】
∵100,80,x,1,1,这组数据的众数与平均数相等,
∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.
∴(100+80+x+1+1)÷5=1,解得,x=1.
∵当x=1时,数据为80,1,1,1,100,
∴中位数是1.
13、1
【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
【详解】
解:∵△ABC中,AB=AC,
∴∠B=∠C,
∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,
∴∠A:∠B=1:2,
即5∠A=180°,
∴∠A=1°,
故答案为1.
本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.
三、解答题(本大题共5个小题,共48分)
14、(1)甲、乙两工程队每天能完成绿化面积分别为和;(2);(3)甲工程队施工15天,乙工程队施工10天,则施工总费用最低,最低费用为11.5万.
【解析】
(1)设出两队的每天绿化的面积,以两队工作时间为等量构造分式方程;
(2)以(1)为基础表示甲乙两队分别工作x天、y天的工作总量,工作总量和为1600;
(3)用甲乙两队施工的总天数不超过25天确定自变量x取值范围,用x表示总施工费用,根据一次函数增减性求得最低费用.
【详解】
解:(1)设乙工程队每天能完成绿化的面积为,
则甲工程队每天能完成绿化面积为.
依题意得:,解得
经检验:是原方程的根
.
答:甲、乙两工程队每天能完成绿化面积分别为和.
(2)由(1)得:
(3)由题意可知:
即
解得
总费用
值随值的增大而增大.
当天时,
答:甲工程队施工15天,乙工程队施工10天,则施工总费用最低,最低费用为11.5万.
此题考查一次函数的应用,分式方程的应用,解题关键在于理解题意列出方程.
错因分析:中等题.失分的原因是:1.不能根据题意正确列出方程,解方程时出错;2.没有正确找出一次函数关系;3.不能利用一次函数的增减性求最小值;4.答题过程不规范,解方程后忘记检验.
15、 (1) A,B两种品牌的教学设备分别为20套,30套; (2) 至多减少1套.
【解析】
(1)设A品牌的教学设备x套,B品牌的教学设备y套,根据题意可得方程组,解方程组即可求得商场计划购进A,B两种品牌的教学设备的套数;
(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意得不等式1.5(20-a)+1.2(30+1.5a)≤69,解不等式即可求得答案.
【详解】
(1)设A品牌的教学设备x套,B品牌的教学设备y套,由题意,得
,
解得:.
答:该商场计划购进A品牌的教学设备20套,B品牌的教学设备30套;
(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意,得
1.5(20-a)+1.2(30+1.5a)≤69,
解得:a≤1.
答:A种设备购进数量至多减少1套.
16、(1)4h;(2)y=120x﹣40(1≤x≤3);(3)小刚一家出发2.5小时时离目的地120km远.
【解析】
试题分析:(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.
试题解析:(1)从小刚家到该景区乘车一共用了4h时间;
(2)设AB段图象的函数表达式为y=kx+b.
∵A(1,80),B(3,320)在AB上,
∴,
解得.
∴y=120x﹣40(1≤x≤3);
(3)当x=2.5时,y=120×2.5﹣40=260,
380﹣260=120(km).
故小刚一家出发2.5小时时离目的地120km远.
考点:一次函数的应用.
17、(1)见解析;(2)见解析.
【解析】
(1)先作出∠MBN=∠,然后在边BM上截取BA=m得到点A,在以A为圆心AC=n为半径画弧角AN于C,得到点C,连接AC,即可得到符合要求的图形.
(2)以点A为圆心,任意长为半径画弧,再以弧与角两边的交点为圆心,大于两弧交点的一半长为半径画弧,两弧的交点为E,连接AE,交BC于D,. AD就是所求∠BAC的角平分线.
【详解】
解:(1)如图所示的△ABC就是所要求作的图形.
(2)如图所示;
本题主要考查了作一个角等于已知角,作一条线段等于已知线段的作法,作已知角的角平分线,都是基本作图,需要熟练掌握.
18、 (1);(2)证明见解析.
【解析】
(1)根据正方形的性质可得∠BCG=∠DCB=∠DCF=90°,BC=DC,再根据同角的余角相等求出∠CBG=∠CDF,然后利用“角边角”证明△CBG和△CDF全等,根据全等三角形对应边相等可得BG=DF,再利用勾股定理列式计算即可得解;
(2)过点过点C作CM⊥CE交BE于点M,根据全等三角形对应边相等可得CG=CF,全等三角形对应角相等可得∠F=∠CGB,再利用同角的余角相等求出∠MCG=∠ECF,然后利用“角边角”证明△MCG和△ECF全等,根据全等三角形对应边相等可得MG=EF,CM=CE,从而判断出△CME是等腰直角三角形,再根据等腰直角三角形的性质证明即可.
【详解】
(1)解:∵四边形ABCD是正方形,
∴∠BCG=∠DCB=∠DCF=90°,BC=DC,
∵BE⊥DF,
∴∠CBG+∠F=∠CDF+∠F,
∴∠CBG=∠CDF,
在△CBG和△CDF中,
,
∴△CBG≌△CDF(ASA),
∴BG=DF=4,
∴在Rt△BCG中,CG2+BC2=BG2,
∴CG==;
(2)证明:如图,过点C作CM⊥CE交BE于点M,
∵△CBG≌△CDF,
∴CG=CF,∠F=∠CGB,
∵∠MCG+∠DCE=∠ECF+∠DCE=90°,
∴∠MCG=∠ECF,
在△MCG和△ECF中,
,
∴△MCG≌△ECF(SAS),
∴MG=EF,CM=CE,
∴△CME是等腰直角三角形,
∴ME=CE,
又∵ME=MG+EG=EF+EG,
∴EF+EG=CE.
本题考查了正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形,熟练掌握性质定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.
20、14cm
【解析】
根据三角形中位线定理得到EF=BC,DF=AB,DE=AC,根据三角形的周长公式计算即可.
【详解】
解:∵△ABC的周长为28,
∴AB+AC+BC=28cm,
∵点D、E、F分别是BC、AB、AC的中点,
∴EF=BC,DF=AB,DE=AC,
∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=14(cm),
故答案为:14cm.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
21、6x
【解析】
先确定各分母中,系数的最小公倍数,再找出各因式的最高次幂,即可得答案.
【详解】
∵3个分式分母的系数分别为1,2,3
∴此系数最小公倍数是6.
∵x的最高次幂均为1,
∴三个分式的最简公分母为6x.
故答案为:6x
本题考查分式最简公分母的定义:最简公分母就是由每个分母中系数的最小公倍数与各因式的最高次幂的积.
22、2或或
【解析】
分情况讨论:
(1)当PB为腰时,若P为顶点,则E点与C点重合,如图1所示:
∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,
∵P是AD的中点,
∴AP=DP=2,
根据勾股定理得:BP===;
若B为顶点,则根据PB=BE′得,E′为CD中点,此时腰长PB=;
(2)当PB为底边时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;
①当E在AB上时,如图2所示:
则BM=BP=,
∵∠BME=∠A=90°,∠MEB=∠ABP,
∴△BME∽△BAP,
∴,即,
∴BE=;
②当E在CD上时,如图3所示:
设CE=x,则DE=4−x,
根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,
∴42+x2=22+(4−x)2,
解得:x=,
∴CE=,
∴BE= ==;
综上所述:腰长为:,或,或;
故答案为,或,或.
点睛:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质并能进行推理计算是解决问题的关键.
23、.
【解析】
根据正方形的性质和勾股定理求边长即可.
【详解】
∵四边形ABCD是正方形,∴AO=DOAC4=2,AO⊥DO,∴△AOD是直角三角形,∴AD.
故答案为:2.
本题考查了勾股定理及正方形性质,属于基础题,比较简单.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析.
【解析】
(1)根据菱形的四条边的对边平行且相等可得AB=CD,AB∥CD,再求出四边形BECD是平行四边形,然后根据平行四边形的对边相等证明即可;
(2)只要证明DC=DB,即证明△DCB是等边三角形即可解决问题;
【详解】
证明:四边形是菱形,
∴,,
又∵,
∴,,
∴四边形 是平行四边形,
∴;
解:结论:四边形是菱形.
理由:∵四边形是菱形,
∴,∵,
∴,是等边三角形,
∴,
∵四边形是平行四边形,
∴四边形是菱形.
考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.
25、证明见解析
【解析】
先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.
【详解】
∵BF∥CE,CF∥BE,
∴四边形BECF是平行四边形.
又∵在矩形ABCD中,
BE平分∠ABC,CE平分∠DCB,
∴∠EBC=∠ECB=45°,
∴∠BEC=90°,BE=CE,
∴四边形BECF是正方形
本题主要考查平行四边形及正方形的判定.
26、(1)m>﹣;(2)m=﹣1.
【解析】
(1)根据方程的系数结合根的判别式,即可得出△=1m+17>0,解之即可得出结论;
(2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.
【详解】
解:(1)∵方程有两个不相等的实数根,
∴△==1m+17>0,
解得:m>﹣,
∴当m>﹣时,方程有两个不相等的实数根.
(2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=.
∵2a、2b为边长为5的菱形的两条对角线的长,∴= =2m2+1m+9=52=25,解得:m=﹣1或m=2.
∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣1.
若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣1.
本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=1m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.
题号
一
二
三
四
五
总分
得分
批阅人
A
B
进价(万元/套)
1.5
1.2
售价(万元/套)
1.65
1.4
相关试卷
这是一份山东省曹县第一中学2025届数学九年级第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省曹县九年级数学第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省菏泽市名校数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。