![山东省济宁地区2025届九年级数学第一学期开学调研试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16288012/0-1729810935320/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省济宁地区2025届九年级数学第一学期开学调研试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16288012/0-1729810935374/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省济宁地区2025届九年级数学第一学期开学调研试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16288012/0-1729810935404/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省济宁地区2025届九年级数学第一学期开学调研试题【含答案】
展开这是一份山东省济宁地区2025届九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果一个多边形的内角和等于它的外角和,那么这个多边形是( )
A.六边形B.五边形C.四边形D.三角形
2、(4分)关于x的分式方程有增根,则a的值为( )
A.2B.3C.4D.5
3、(4分)如图,矩形纸片中,,把纸片沿直线折叠,点落在处,交于点,若,则的面积为( )
A.B.C.D.
4、(4分)下列表达式中是一次函数的是( )
A.B.C.D.
5、(4分)计算的结果为( )
A.±3B.-3C.3D.9
6、(4分)如图,▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,OE⊥BD交BC于点E,CD=1,则CE的长为( )
A.B.C.D.
7、(4分)下列各式计算正确的是( )
A.3﹣=3B.2+=2C.=2D.=4
8、(4分)如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有( )
A.点M,点NB.点M,点QC.点N,点PD.点P,点Q
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)多边形的每个外角都等于45°,则这个多边形是________边形.
10、(4分)如图,点P在第二象限内,且点P在反比例函数图象上,PA⊥x轴于点A,若S△PAO的面积为3,则k的值为 .
11、(4分)计算:=_______.
12、(4分)从沿北偏东的方向行驶到,再从沿南偏西方向行驶到,则______.
13、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于 的二元一次方程组的解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
设购买银杏树苗x棵,到两家购买所需费用分别为元、元
(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
(2)当时,分别求出、与x之间的函数关系式;
(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
15、(8分)在平面直角坐标系中,正比例函数与反比例函数为的图象交于两点
若点,求的值;
在的条件下,x轴上有一点,满足的面积为,水点坐标;
若,当时,对于满足条件的一切总有,求的取值范围.
16、(8分)为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”短跑运动可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.
(1)请根据图中信息,补齐下面的表格;
(2)从图中看,小明与小亮哪次的成绩最好?
(3)分别计算他们的平均数和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?
17、(10分)阅读下列材料,解决问题:
学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点
解决问题
(1)在图①中,如果AM=2,MN=3,则NB= .
(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.李玉同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由
(3)如图③,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H求证:G、H是线段DE的勾股点.
18、(10分)潮州市某学校为了改善办学条件,购置一批电子白板和台式电脑合共24台.经招投标,一台电子白板每台9000元,一台台式电脑每台3000元,设学校购买电子白板和台式电脑总费用为元,购买了台电子白板,并且台式电脑的台数不超过电子白板台数的3倍.
(1)请求出与的函数解析式,并直接写出的取值范围
(2)请问当购买多少台电子白板时,学校购置电子白板和台式电脑的总费用最少,最少多少钱?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若多项式,则=_______________.
20、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.
21、(4分)如图,将直线沿轴向下平移后的直线恰好经过点,且与轴交于点,在x轴上存在一点P使得的值最小,则点P的坐标为 .
22、(4分)若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.
23、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)进入夏季用电高峰季节,市供电局维修队接到紧急通知:要到 30 千米远的某乡镇进行紧急抢修,维修工骑摩托车先走,15 分钟后,抢修车装载所需材料出发, 结果两车同时到达抢修点,已知抢修车的速度是摩托车速度的 1.5 倍,求两种车的速 度.
25、(10分)小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).
(1)画出平面直角坐标系;
(2)求出其他各景点的坐标.
26、(12分)如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F,求证:四边形BEDF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360 °列方程求解即可.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°=360°,
n﹣2=2,
n=1.
故选:C.
本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.
2、D
【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.
【详解】
解:去分母得:x+1=a,
由分式方程有增根,得到x-4=0,即x=4,
代入整式方程得:a=5,
故选:D.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
3、A
【解析】
由矩形的性质可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折叠的性质可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的长,即可求△ABC的面积.
【详解】
解:∵四边形ABCD是矩形
∴∠B=90°,AB∥CD
∴∠DCA=∠CAB
∵把纸片ABCD沿直线AC折叠,点B落在E处,
∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,
∴∠DCA=∠EAC
∴AO=OC=5cm
∴,
∴AE=AO+OE=8cm,
∴AB=8cm,
∴△ABC的面积=×AB×BC=16cm2,
故选:A.
本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.
4、B
【解析】
根据一次函数解析式的结构特征可知,其自变量的最高次数为1、系数不为零,常数项为任意实数,即可解答
【详解】
A. 是反比例函数,故本选项错误;
B. 符合一次函数的定义,故本选项正确;
C. 是二次函数,故本选项错误;
D. 等式中含有根号,故本选项错误.
故选B
此题考查一次函数的定义,解题关键在于掌握其定义
5、C
【解析】
根据=|a|进行计算即可.
【详解】
=|-3|=3,
故选:C.
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
6、D
【解析】
首先证明四边形ABCD是矩形,在RT△BOE中,易知BE=2EO,只要证明EO=EC即可.
【详解】
∵四边形ABCD是平行四边形,
∴AO=OC,BO=OD,
∵△ABO是等边三角形,
∴AO=BO=AB,
∴AO=OC=BO=OD,
∴AC=BD,
∴四边形ABCD是矩形.
∴OB=OC,∠ABC=90°,
∵△ABO是等边三角形,
∴∠ABO=60°,
∴∠OBC=∠OCB=30°,∠BOC=120°,
∵BO⊥OE,
∴∠BOE=90°,∠EOC=30°,
∴∠EOC=∠ECO,
∴EO=EC,
∴BE=2EO=2CE,
∵CD=1,
∴BC=CD=,
∴EC=BC=,
故选:D.
本题考查平行四边形的性质、矩形的判定、等边三角形的性质、等腰三角形的判定等知识,解题的关键是直角三角形30度角的性质的应用,属于中考常考题型.
7、C
【解析】
直接利用二次根式的性质分别计算得出答案.
【详解】
A、3﹣=2,故此选项错误;
B、2+,无法计算,故此选项错误;
C、=2,正确;
D、÷==2,故此选项错误;
故选:C.
考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.
8、C
【解析】
画出中心对称图形即可判断
【详解】
解:观察图象可知,点P.点N满足条件.
故选:C.
本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、八
【解析】
根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.
【详解】
解:∵360°÷45°=8,
∴这个多边形是八边形.
故答案为:八.
此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.
10、-6
【解析】
由△PAO的面积为3可得=3,再结合图象经过的是第二象限,从而可以确定k值;
【详解】
解:∵S△PAO=3,
∴=3,
∴|k|=6,
∵图象经过第二象限,
∴k<0,
∴k=−6;
故答案为:−6.
本题主要考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,掌握反比例函数系数k的几何意义,反比例函数图象上点的坐标特征是解题的关键.
11、3
【解析】
先把化成,然后再合并同类二次根式即可得解.
【详解】
原式=2.
故答案为
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
12、40
【解析】
根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.
【详解】
如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°-60°=30°,
B沿南偏西20°的方向行驶到C,则∠BCO=90°-20°=70°,
又∵∠ABC=∠BCO-∠BAC,∴∠ABC=70°-30°=40°.
故答案为:40°
解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.
13、x=1,y=1
【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
解:函数y=ax+b和y=kx的图象交于点P(1,1)
即x=1,y=1同时满足两个一次函数的解析式.
所以,方程组的解是 ,
故答案为x=1,y=1.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
三、解答题(本大题共5个小题,共48分)
14、 (1)610000元,640000元;(2),;(3)见解析.
【解析】
(1)由单价数量及可以得出购买树苗需要的费用;
(2)根据当,由单价数量就可以得出购买树苗需要的费用表示出、与之间的函数关系式;
(3)分类讨论,当,时,时,表示出、的关系式,就可以求出结论.
【详解】
解:由题意,得.
元,
元;
故答案为;640000
当时,,,x为正整数,
当时,到两家购买所需费用一样;
时,甲家有优惠而乙家无优惠,所以到甲家购买合算;
当时,,解得,当时,到两家购买所需费用一样;
当y甲乙时,,
当时,到甲家购买合算;
当y甲乙时,,
当时,到乙家购买合算.
综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
本题考查了运用一次函数的解析式解实际问题的运用,方案设计的运用,单价×数量=总价,解答时求出一次函数的解析式是关键.
15、(1);(2)或;(3)
【解析】
(1)将点分别代入正比例函数解析式以及反比例函数解析式,即可求出的值;
(2)联立正反比例函数解析式求出点B的坐标,可得原点O为的中点,再根据三角形面积公式求解即可;
(3)当时,,根据题意得出,再根据k与m的关系求解即可.
【详解】
解:将代入和
解得
(2)联立,解得:或,
,
∴原点O为的中点,
,
,
或;
,
,
当时,对于的一切总有,
,
,
∵,
∴,
.
本题考查了数形结合的数学思想.解此类题型通常与不等式结合.利用图象或解不等式的方法来解题是关键.
16、(1)见解析;(2)小明第4次成绩最好,小亮第3次成绩最好;(3)小明平均数:13.3,方差为:0.004;小亮平均数为:13.3,方差为:0.02;建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.
【解析】
(1)、(2),根据图形,分别找出小明第4次成绩和小亮第2次的成绩,进而补全表格,再结合统计图找出小明和小亮的最好成绩即可;
(3)根据平均数和方差的计算公式分别求出小明和小亮的平均成绩和方差即可.
【详解】
(1)根据统计图补齐表格,如下:
(2)由图可得,小明第4次成绩最好,小亮第3次成绩最好.
(3)小明的平均成绩为: (13.3+13.4+13.3+13.2+13.3)=13.3(秒),
方差为:×[(13.3-13.3)+(13.4-13.3) +(13.3-13.3) +(13.2-13.3) +(13.3-13.3) ]=0.004;
小亮的平均成绩为: (13.2+13.4+13.1+13.5+13.3)÷5=13.3(秒),
方差为×[(13.2-13.3) +(13.4-13.3) +(13.1-13.3) +(13.5-13.3) +(13.3-13.3) ]=0.02.
从平均数看,两人的平均水平相等;从方差看,小明的成绩较稳定,小亮的成绩波动较大.建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.
此题考查折线统计图,方差,算术平均数,解题关键在于掌握运算法则,看懂图中数据
17、(1)或;(2)对,理由见解析;(3)见解析
【解析】
(1)分两种情形分别求解即可解决问题.
(2)想办法证明DB2=AC2+CD2即可.
(3)利用三角形的中位线定理以及勾股定理证明EH2=GH2+DG2即可.
【详解】
解:(1)当BN是斜边时,BN==.
当MN是斜边时,BN==,
故答案为或.
(2)如图②中,连接DE.
∵点D在线段BE的垂直平分线上,
∴DE=DB,
∵GH⊥BC,
∴∠ECD=90°,
∴DE2=EC2+CD2,
∵AC=CE,DE=DB,
∴DB2=AC2+CD2,
∴C、D是线段AB的勾股点.
(3)如图3中,
∵CD=DA,CE=EB,
∴DE∥AB,
∴CG=GM,CH=HN,
∴DG=AM,GH=MN,EH=BN,
∵BN2=MN2+AM2,
∴BN2=MN2+AM2,
∴(BN)2=(MN)2+(AM)2,
∴EH2=GH2+DG2,
∴G、H是线段DE的勾股点.
本题考查作图−复杂作图,线段的垂直平分线的性质,勾股定理,三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、 (1)(,且为整数);(2)当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.
【解析】
(1)根据题意“电子白板和台式电脑合共24台,一台电子白板每台9000元,一台台式电脑每台3000元”即可列出与的函数解析式,又根据“台式电脑的台数不超过电子白板台数的3倍”求出x的取值范围;
(2)根据一次函数的性质即可得随的增大而增大,所以当时,有最小值.
【详解】
解:(1)依题意可得:
,
∵台式电脑的台数不超过电子白板台数的3倍,
∴24-x≤3x
x≥6,
则x的取值范围为,且为整数;
(2)∵,,
∴随的增大而增大,∴当时,有最小值.
(元)
答:当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.
本题考查了一次函数的性质和应用,解题的关键是读懂题意,找出之间的数量关系列出一次函数,此题难度不大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
利用多项式乘法去括号,根据对应项的系数相等即可求解.
【详解】
∵
∴,
故答案为:-1.
本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.
20、1
【解析】
根据自变量与函数值的对应关系,可得相应的函数值.
【详解】
当x=3时,y=﹣3+5=1.
故答案为:1.
本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.
21、(,0)
【解析】
如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,
【详解】
解:设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,
把A(2,﹣4)代入可得,a=﹣2,
∴平移后的直线为y=﹣x﹣2,
令x=0,则y=﹣2,即B(0,﹣2)
∴B'(0,2),
设直线AB'的解析式为y=kx+b,
把A(2,﹣4),B'(0,2)代入可得,,解得,
∴直线AB'的解析式为y=﹣3x+2,
令y=0,则x=,∴P(,0).
22、1800
【解析】
多边形的外角和等于360°,则正多边形的边数是360°÷30°=12,所以正多边形的内角和为.
23、1
【解析】
由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.
【详解】
∵四边形ABCD是平行四边形,
∴BC=AD=6,
∵E为BC的中点,AC⊥AB,
∴AE=BC=1,
故答案为:1.
本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、摩托车的速度是40km/h,抢修车的速度是60km/h.
【解析】
设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.
【详解】
设摩托车的是xkm/h,
x=40
经检验x=40是原方程的解.
40×1.5=60(km/h).
摩托车的速度是40km/h,抢修车的速度是60km/h.
此题考查分式方程的应用,解题关键在于理解题意列出方程.
25、A(0,4),B(﹣3,2),C(﹣2,﹣1),E(3,3),F(0,0).
【解析】
(1)已知游乐园的坐标为(2,-2),将该点向左平移两个单位、再向上平移两个单位,即可得到原点(0,0)的位置;
接下来,以(0,0)为坐标原点,以水平向右的方向为x轴正半轴,以竖直向上的方向为y轴正方向建立平面直角坐标系即可;
(2)根据(1)中的坐标系和其他各景点的位置即可确定它们的坐标.
【详解】
(1)由题意可得,
建立的平面直角坐标系如图所示.
(2)由平面直角坐标系可知,
音乐台A的坐标为(0,4),湖心亭B的坐标为(-3,2),望春亭C的坐标为(-2,-1),游乐园D的坐标为(2,-2),牡丹园E的坐标为(3,3).
本题考查坐标确定位置.
26、见解析
【解析】
根据平行四边形的性质得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根据角平分线的定义求出∠ADF=∠EBC,求出∠AEB=∠ADF,根据平行线的判定得出BE∥DF,根据平行四边形的判定得出即可.
【详解】
∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD∥BC,
∴DE∥BF,∠EBC=∠AEB,
∵∠ABC、∠ADC的平分线分别交AD、BC于点E、F,
∴∠ADF=ADC,∠EBC=ABC,
∴∠ADF=∠EBC,
∴∠AEB=∠ADF,
∴BE∥DF,
∵DE∥BF,
∴四边形BEDF是平行四边形.
本题考查了平行四边形的性质和判定,平行线的性质,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届山东省青州市数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省济宁鱼台县联考九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省济宁市市中学区九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。