终身会员
搜索
    上传资料 赚现金

    山东省兰陵县2025届数学九年级第一学期开学联考模拟试题【含答案】

    立即下载
    加入资料篮
    山东省兰陵县2025届数学九年级第一学期开学联考模拟试题【含答案】第1页
    山东省兰陵县2025届数学九年级第一学期开学联考模拟试题【含答案】第2页
    山东省兰陵县2025届数学九年级第一学期开学联考模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省兰陵县2025届数学九年级第一学期开学联考模拟试题【含答案】

    展开

    这是一份山东省兰陵县2025届数学九年级第一学期开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2=( )
    A.90°B.135°C.270°D.315°
    2、(4分)一次函数的图像经过点,且的值随值的增大而增大,则点的坐标可以为( )
    A.B.C.D.
    3、(4分)如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是( )
    A.∠ABC=90°B.∠BCD=90°C.AB=CDD.AB∥CD
    4、(4分)一元二次方程的解是( )
    A.0B.4C.0或4D.0或-4
    5、(4分)已知四边形ABCD,有以下4个条件:①AB∥CD;②AB=DC;③AD∥BC;④AD=BC.从这4个条件中选2个,不能判定这个四边形是平行四边形的是( )
    A.①②B.①③C.①④D.②④
    6、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( )
    A.甲B.乙C.丙D.无法确定
    7、(4分)要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的( )
    A.方差B.中位数C.众数D.平均数
    8、(4分)若在实数范围内有意义,则x的取值范围是( )
    A.B.C.D.x<3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)化简得 .
    10、(4分)把化为最简二次根式,结果是_________.
    11、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.
    12、(4分)若a、b,c为三角形的三边,则________。
    13、(4分)已知:如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,若CE=8,则DF的长是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:
    酒店豪华间有多少间?旺季每间价格为多少元?
    15、(8分)某校举办“书香校园”读书活动,经过对八年级(2)班的全体学生的每人每月读书的数量(单位:本)进行统计分析,得到条形统计图如图所示:
    (1)填空:该班学生读书数量的众数是 本,中位数是 本;
    (2)求该班学生每月的平均读书数量?(结果精确到0.1)
    16、(8分)在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”,如图为点、的“极好菱形”的一个示意图.

    (1)点,,中,能够成为点、的“极好菱形”的顶点的是_______.
    (2)若点、的“极好菱形”为正方形,则这个正方形另外两个顶点的坐标是________.
    (3)如果四边形是点、的“极好菱形”
    ①当点的坐标为时,求四边形的面积
    ②当四边形的面积为,且与直线有公共点时,直接写出的取值范围.
    17、(10分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.
    (1)求证:△AOE≌△COF;
    (2)求证:四边形AFCE为菱形;
    (3)求菱形AFCE的周长.
    18、(10分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.
    (1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图, ,矩形ABCD的顶点A、B分别在OM、ON上,当B在边ON上运动时,A 随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,则运动过程中,点C到点O的最大距离为___________.
    20、(4分)△ABC 中,已知:∠C=90°,AB=17,BC=8,则 AC=_____.
    21、(4分)将直线y= 7x向下平移2个单位,所得直线的函数表达式是________.
    22、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.
    23、(4分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大. 请将他们的探究过程补充完整.
    (1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=____________;
    (2)上述函数表达式中,自变量x的取值范围是____________;
    (3)列表:

    写出m=____________;
    (4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;
    (5)结合图象可得,x=____________时,矩形的面积最大;写出该函数的其它性质(一条即可):____________.
    25、(10分)某报社为了了解市民“获取新闻的最主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.
    请根据图表信息解答下列问题:
    (1)统计表中的m= ,n= ,并请补全条形统计图;
    (2)扇形统计图中“D”所对应的圆心角的度数是 ;
    (3)若该市约有120万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数.
    26、(12分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=15,AB=9.
    求:(1)FC的长;(2)EF的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.
    【详解】
    解:∵△ABC为直角三角形,∠B=90°
    ∴∠1=90°+∠BNM,∠2=90°+∠BMN,∠BMN +∠BNM=90°,
    ∴∠1+∠2=270°.
    故选C.
    本题考查三角形的外角性质、三角形内角和定理,直角三角形的性质,解题的关键在于求证∠1=90°+∠BNM,∠2=90°+∠BMN.
    2、A
    【解析】
    y的值随x值的增大而増大,可知函数y=kx-1图象经过第一、三、四象限,结合选项判断点(1,-3)符合题意.
    【详解】
    解:y的值随x值的增大而増大,
    ∴k>0,
    ∴函数图象经过第一、三、四象限,
    点(1,-3)、点(5,3)和点(5,-1)符合条件,
    当经过(5,-1)时,k=0,
    当经过(1,-3)时,k=-2,
    当经过(5,3)时,k=,
    故选:A.
    本题考查一次函数图象及性质;熟练掌握一次函数图象性质,点与函数图象的关系是解题的关键.
    3、C
    【解析】
    根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分别进行分析即可.
    【详解】
    A、∵∠BAD=90°,BO=DO,
    ∴OA=OB=OD,
    ∵∠ABC=90°,
    ∴AO=OB=OD=OC,
    即对角线平分且相等,
    ∴四边形ABCD为矩形,正确;
    B、∵∠BAD=90°,BO=DO,
    ∴OA=OB=OD,∵∠BCD=90°,
    ∴AO=OB=OD=OC,
    即对角线平分且相等,
    ∴四边形ABCD为矩形,正确;
    C、∵∠BAD=90°,BO=DO,AB=CD,
    无法得出△ABO≌△DCO,
    故无法得出四边形ABCD是平行四边形,
    进而无法得出四边形ABCD是矩形,错误;
    D、∵AB||CD,∠BAD=90°,
    ∴∠ADC=90°,
    ∵BO=DO,
    ∴OA=OB=OD,
    ∴∠DAO=∠ADO,
    ∴∠BAO=∠ODC,
    ∵∠AOB=∠DOC,
    ∴△AOB≌△DOC,
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,
    ∵∠BAD=90°,
    ∴▱ABCD是矩形,正确;
    故选:C.
    此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理.
    4、C
    【解析】
    对左边进行因式分解,得x(x-1)=0,进而用因式分解法解答.
    【详解】
    解:因式分解得,x(x-1)=0,
    ∴x=0或x-1=0,
    ∴x=0或x=1.
    故选C.
    本题考查了用因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简单方法.但在解决类似本题的题目时,往往容易直接约去一个x,而造成漏解.
    5、C
    【解析】
    根据平行四边形的判定方法即可一一判断;
    【详解】
    A、由①②可以判定四边形ABCD是平行四边形;故本选项不符合题意;
    B、由①③可以判定四边形ABCD是平行四边形;故本选项不符合题意;
    C、由①④无法判定四边形ABCD是平行四边形,可能是等腰梯形,故本选项符合题意;
    D、由②④可以判定四边形ABCD是平行四边形;故本选项不符合题意;
    故选:C.
    本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.
    6、C
    【解析】
    分析:根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.
    详解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
    所以这10次测试成绩比较稳定的是丙,
    故选C.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    7、A
    【解析】
    由于方差是用来衡量一组数据波动大小的量,故判断两队舞蹈队的身高较整齐通常需要比较两个队身高的方差.
    故选A
    考点:统计量的选择;方差
    8、B
    【解析】
    根据二次根式有意义的条件列出不等式,解不等式即可.
    【详解】
    解:由题意得,3-x≥0,
    解得,x≤3,
    故选:B.
    本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    试题分析:原式=.
    考点:分式的化简.
    10、
    【解析】
    直接利用二次根式的性质化简求出答案.
    【详解】

    故答案为.
    本题考查了二次根式的性质与化简,正确开平方是解题的关键.
    11、
    【解析】
    根据锐角三角函数的定义以及正方形的性质即可求出答案.
    【详解】
    解:设正方形的边长为x,
    ∴CE=ED=x,
    ∴AE=AC-CE=12-x,
    在Rt△ABC中,

    在Rt△ADE中,

    ∴,
    ∴解得:x=,
    故答案为:.
    本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.
    12、2a
    【解析】
    根据三角形三条边的长度关系,可以得到两个括号内的正负情况;再根据一个数先平方,后开方,所得的结果是这个数的绝对值,来计算这个式子.
    【详解】
    ∵a,b,c是三角形的三边,
    三角形任意两边之和大于第三边,任意两条边之差小于第三边,
    ∴a+b-c>0,b-c-a<0,
    所以==.
    本题主要考查了三角形三边的边长关系:三角形任意两条边之和大于第三边,任意两条边之差小于第三边.解决本题,还需要清楚地明白一个数先平方后开方,所得的就是这个数的绝对值.
    13、1
    【解析】
    根据直角三角形的性质得到AB=2CE=16,根据三角形中位线定理计算即可.
    【详解】
    ∵∠ACB=90°,E是AB的中点,
    ∴AB=2CE=16,
    ∵D、F分别是AC、BC的中点,
    ∴DF=AB=1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、该酒店豪华间有50间,旺季每间价格为800元.
    【解析】
    根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;
    【详解】
    设淡季每间的价格为x元,酒店豪华间有y间,

    解得, ,
    ∴x+13x=600+13×600=800,
    答:该酒店豪华间有50间,旺季每间价格为800元;
    此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.
    15、(1)4,4;(2)3.6本
    【解析】
    (1)生读书数量的众数是4,中位数是4,
    故答案为4,4;
    (2)该班学生每月的平均读书数量≈3.6本.
    16、 (1) ,;
    (1) (1,3)、(3,1);
    (3)①1;②-2≤b≤2.
    【解析】
    (1)如图1中,观察图象可知:F、G能够成为点M,P的“极好菱形”顶点;
    (1)先求得对角线PM的长,从而可得到正方形的边长,然后可得到这个正方形另外两个顶点的坐标;
    (3)①,先依据题意画出图形,然后可证明该四边形为正方形,从而可求得它的面积;②根据菱形的性质得:PM⊥QN,且对角线互相平分,由菱形的面积为8,且菱形的面积等于两条对角线积的一半,可得QN的长,证明Q在y轴上,N在x轴上,可得结论.
    【详解】
    解:(1)如图1中,观察图象可知:F、G能够成为点M,P的“极好菱形”顶点.
    故答案为F,G;
    (1)如图1所示:
    ∵点M的坐标为(1,1),点P的坐标为(3,3),
    ∴MP=1.
    ∵“极好菱形”为正方形,其对角线长为1,
    ∴其边长为1.
    ∴这个正方形另外两个顶点的坐标为(1,3)、(3,1).
    (3)①如图1所示:
    ∵M(1,1),P(3,3),N(3,1),
    ∴MN=1,PN⊥MN.
    ∵四边形MNPQ是菱形,
    ∴四边形MNPQ是正方形.
    ∴S四边形MNPQ=2..
    ②如图3所示:
    ∵点M的坐标为(1,1),点P的坐标为(3,3),
    ∴PM=1,
    ∵四边形MNPQ的面积为8,
    ∴S四边形MNPQ=PM•QN=8,即
    ×1×QN=8,
    ∴QN=2,
    ∵四边形MNPQ是菱形,
    ∴QN⊥MP,ME=,EN=1,
    作直线QN,交x轴于A,
    ∵M(1,1),
    ∴OM=,
    ∴OE=1,
    ∵M和P在直线y=x上,
    ∴∠MOA=25°,
    ∴△EOA是等腰直角三角形,
    ∴EA=1,
    ∴A与N重合,即N在x轴上,
    同理可知:Q在y轴上,且ON=OQ=2,
    由题意得:四边形MNPQ与直线y=x+b有公共点时,b的取值范围是-2≤b≤2.
    本题是二次函数的综合题,考查了菱形的性质、正方形的判定、点M,P的“极好菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题.
    17、(1)详见解析;(2)详见解析;(3)20cm.
    【解析】
    (1)求出AO=OC,∠AOE=∠COF,根据平行的性质得出∠EAO=∠FCO,根据ASA即可得出两三角形全等;
    (2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
    (3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,进而得到菱形AFCE的周长.
    【详解】
    (1)证明:∵EF是AC的垂直平分线,
    ∴AO=OC,∠AOE=∠COF=90°,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠EAO=∠FCO.
    在△AOE和△COF中,

    ∴△AOE≌△COF(ASA);
    (2)证明:∵△AOE≌△COF,
    ∴OE=OF,
    ∵OA=OC,
    ∴四边形AFCE为平行四边形,
    又∵EF⊥AC,
    ∴平行四边形AFCE为菱形;
    (3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,
    在Rt△ABF中,由勾股定理得:
    AB2+BF2=AF2,
    即42+(8﹣x)2=x2,
    解得x=1.
    所以菱形AFCE的周长为1×4=20cm.
    本题考查了菱形的判定与性质, 全等三角形的判定与性质, 线段垂直平分线的性质, 矩形的性质等知识.根据勾股定理并建立方程是解题的关键.
    18、证明见解析
    【解析】
    (1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;
    (2)依据矩形的性质可得到EO=BA,然后依据菱形的性质可得到AB=CD.
    【详解】
    (1)四边形AEBO是矩形.
    证明:∵BE∥AC,AE∥BD,
    ∴四边形AEBO是平行四边形.
    又∵菱形ABCD对角线交于点O,
    ∴AC⊥BD,即∠AOB=90°.
    ∴四边形AEBO是矩形.
    (2)∵四边形AEBO是矩形,
    ∴EO=AB,
    在菱形ABCD中,AB=DC.
    ∴EO=DC.
    本题主要考查的是菱形的性质判定、矩形的性质和判定,熟练掌握相关图形的性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    取AB的中点E,连接OE、CE、OC,根据三角形的任意两边之和大于第三边可知当O、C、E三点共线时,点C到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
    【详解】
    如图,取AB的中点E,连接OE、CE、OC,∵OC⩽OE+CE,
    ∴当O、C. E三点共线时,点C到点O的距离最大,
    此时,∵AB=2,BC=1,
    ∴OE=AE=AB=1,
    CE=,
    ∴OC的最大值为:
    此题考查直角三角形斜边上的中线,勾股定理,解题关键在于做辅助线
    20、15
    【解析】
    根据勾股定理即可算出结果.
    【详解】
    在△ABC中,∠C=90°,AB=17,BC=8,
    所以AC=
    故答案为:15
    本题考查了勾股定理,掌握勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方,是解题的关键.
    21、y=7x-2
    【解析】
    根据一次函数平移口诀:上加下减,左加右减,计算即可.
    【详解】
    将直线y= 7x向下平移2个单位,则y=7x-2.
    本题是对一次函数平移的考查,熟练掌握一次函数平移口诀是解决本题的关键.
    22、1
    【解析】
    由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BC=AD=6,
    ∵E为BC的中点,AC⊥AB,
    ∴AE=BC=1,
    故答案为:1.
    本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
    23、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    ∵∠ACB=90°,D为AB的中点,
    ∴CD=AB=×6=1.
    故答案为1.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    (1)根据矩形的周长表示出另一边长,然后利用矩形面积公式即可求得y与x间的关系式;
    (2)根据矩形周长以及边长大于0即可求得;
    (3)把x=3.5代入(1)中的解析式即可求得m的值;
    (4)按从左到右的顺序用平滑的曲线进行画图即可;
    (5)观察图象即可得.
    【详解】
    (1)因为矩形一边长为x,则另一边长为(-x)=(4-x),
    依题意得:矩形的面积y=x(4-x),
    即y=-x2+4x,
    故答案为:-x2 + 4x;
    (2)由题意得,解得:0<x<4,
    故答案为:0<x<4;
    (3)当x=3.5时,y=-3.52+4×3.5=1.75,
    故答案为:1.75;
    (4)如图所示;
    (5)观察图象可知当x=2时矩形面积最大,
    轴对称图形;当0<x≤2时,y随x的增大而增大等,
    故答案为:2;轴对称图形或当0<x≤2时,y随x的增大而增大.
    本题考查了二次函数的应用,正确理解题意,得出函数解析式是解题的关键.注意数形结合思想的运用.
    25、 (1) 400,100;(2) 36°;(3) 81.6万人
    【解析】
    (1)由等级C的人数除以占的百分比,得出调查总人数即可,进而确定出等级B与等级D的人数,进而求出m与n的值;
    (2)由D占的百分比,乘以360即可得到结果;
    (3)根据题意列式计算即可得到结论.
    【详解】
    解:(1)m=140÷14%×40%=400;n=140÷14%﹣280﹣400﹣140﹣80=100;
    条形统计图如下:
    故答案为:400,100;
    (2)扇形统计图中“D”所对应的圆心角的度数是 ×360°=36°;
    故答案为:36°;
    (3) ×120=81.6万人,
    答:其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数81.6万人
    此题考查统计表,扇形统计图,条形统计图,解题关键在于看懂图中数据
    26、(1)FC=3;(2)EF的长为5.
    【解析】
    (1)由折叠性质可得AF=AD,由勾股定理可求出BF的值,再由FC=BC-BF求解即可;
    (2)由题意得EF=DE,设DE的长为x,则EC的长为(9-x)cm,在Rt△EFC中,由勾股定理即可求得EF的值.
    【详解】
    解:(1)∵矩形对边相等,
    ∴AD=BC=15
    ∵折叠长方形的一边AD,点D落在BC边上的点F处
    ∴AF=AD=15,
    在Rt△ABF中,由勾股定理得,
    ∴FC=BC·BF=15-12=3
    (2)折叠长方形的一边AD,点D落在BC边上的点F处
    ∴EF=DE
    设DE=x,则EC=9·x,
    在Rt△EFC中,由勾股定理得,

    解得x=5
    即EF的长为5。
    本题主要考查了折叠问题,解题的关键是熟记折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    题号





    总分
    得分
    批阅人
    淡季
    旺季
    未入住房间数
    10
    0
    日总收入(元)
    24000
    40000
    x

    0.5
    1
    1.5
    2
    2.5
    3
    3.5

    y

    1.75
    3
    3.75
    4
    3.75
    3
    m

    组别
    获取新闻的最主要途径
    人数
    A
    电脑上网
    280
    B
    手机上网
    m
    C
    电视
    140
    D
    报纸
    n
    E
    其它
    80

    相关试卷

    山东省临沂兰陵县联考2025届数学九上开学达标检测模拟试题【含答案】:

    这是一份山东省临沂兰陵县联考2025届数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省临沂兰陵县联考2025届九上数学开学质量跟踪监视试题【含答案】:

    这是一份山东省临沂兰陵县联考2025届九上数学开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省临沂市兰陵县数学九年级第一学期开学联考试题【含答案】:

    这是一份2025届山东省临沂市兰陵县数学九年级第一学期开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map