![山东省临沂市经济开发区2025届数学九年级第一学期开学综合测试试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16288082/0-1729811292002/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省临沂市经济开发区2025届数学九年级第一学期开学综合测试试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16288082/0-1729811292076/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省临沂市经济开发区2025届数学九年级第一学期开学综合测试试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16288082/0-1729811292100/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省临沂市经济开发区2025届数学九年级第一学期开学综合测试试题【含答案】
展开
这是一份山东省临沂市经济开发区2025届数学九年级第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x折,则有
A.B.
C.D.
2、(4分)小刚家院子里的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH上种满小草,则这块草地的形状是 ( )
A.平行四边形 B.矩形 C.正方形 D.梯形
3、(4分)△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )
A.14B.4C.14或4D.以上都不对
4、(4分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )
A.0.1B.0.17C.0.33D.0.4
5、(4分)若一次函数的函数图像不经过第( )象限.
A.一B.二C.三D.四
6、(4分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是( )
A.甲B.乙C.丙D.丁
7、(4分)为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润(万元)与月份之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是( )
A.4月份的利润为万元
B.污改造完成后每月利润比前一个月增加万元
C.治污改造完成前后共有个月的利润低于万元
D.9月份该厂利润达到万元
8、(4分)若不等式组有解,则实数a的取值范围是( )
A.a<-36B.a≤-36C.a>-36D.a≥-36
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________。
10、(4分)在平面直角坐标系中,已知点,如果以为顶点的四边形是平行四边形,那么满足条件的所有点的坐标为___________.
11、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竟赛。对这三名学生进行了10次“数学测试”,经过数据分析,3人的平均成绩均为92分。甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是_____________.
12、(4分)如图,在Rt△ABC中,已知∠BAC=90°,点D、E、F分别是三边的中点,若AF=3cm,则DE=_____cm.
13、(4分)如图,,两条直线与这三条平行线分别交于点、、和、、.已知,,,的长为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:
(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?
15、(8分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填空:a= ,b= ,c= ;
(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?
(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.
16、(8分)某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.
(1)求购买一个甲种足球、一个乙种足球各需多少元?
(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?
17、(10分)解方程:
(1);(2);(3);(4).
18、(10分)如图分别是的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:
(1)在下图中画一个以线段AB为一边的直角,且的面积为2;
(2)在下图中画一个以线段AB为一边的四边形ABDE,使四边形ABDE是中心对称图形且四边形ABDE的面积为1.连接AD,请直接写出线段AD的长.线段AD的长是________
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.
20、(4分)若有意义,则x 的取值范围是 .
21、(4分)实数a,b在数轴上对应点的位置如图所示,化简|b|+=______.
22、(4分)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学均时间是 小时.
23、(4分)如图,在平面直角坐标系xOy中,A是双曲线在第一象限的分支上的一个动点,连接AO并延长与这个双曲线的另一分支交于点B,以AB为底边作等腰直角三角形ABC,使得点C位于第四象限。
(1)点C与原点O的最短距离是________;
(2)没点C的坐标为(,点A在运动的过程中,y随x的变化而变化,y关于x的函数关系式为________。
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
(1)求证:四边形ADCF是平行四边形;
(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.
25、(10分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.
26、(12分)先化简,再求值:÷(x﹣),其中x=﹣1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设该店春装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.
【详解】
解:设该店春装原本打x折,
依题意,得:500()2=1.
故选:C.
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
2、A
【解析】
试题分析:连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.
考点:1.平行四边形的判定;2.三角形中位线定理.
3、C
【解析】
分两种情况:△ABC是锐角三角形和△ABC是钝角三角形,都需要先求出BD,CD的长度,在锐角三角形中,利用求解;在钝角三角形中,利用求解.
【详解】
(1)若△ABC是锐角三角形,
在中,
∵
由勾股定理得
在中,
∵
由勾股定理得
∴
(2)若△ABC是钝角三角形,
在中,
∵
由勾股定理得
在中,
∵
由勾股定理得
∴
综上所述,BC的长为14或4
故选:C.
本题主要考查勾股定理,掌握勾股定理并分情况讨论是解题的关键.
4、D
【解析】
首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总人数30,即可得到仰卧起坐次数在25~30之间的频率.
【详解】
解:∵从频数分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,
∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.1.
故选:D.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
5、D
【解析】
根据k=5>0,函数图像经过一、三象限,b=1>0,函数图像与y轴的正半轴相交,即可进行判断.
【详解】
根据k=5>0,函数图像经过第一、三象限,b=1>0,函数图像与y轴的正半轴相交,则一次函数的函数图像过第一、二、三象限,不过第四象限,故选D.
本题主要考查了一次函数图像的性质,熟练掌握一次函数图像与系数的关系是解决本题的关键.
6、B
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
解:∵s2丁>s2丙>s2甲>s2乙,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
∴乙最稳定.
故选:B.
本题考查了方差,正确理解方差的意义是解题的关键.
7、C
【解析】
首先设反比例函数和一次函数的解析式,根据图像信息,即可得出解析式,然后即可判断正误.
【详解】
设反比例函数解析式为
根据题意,图像过点(1,200),则可得出
当时,,即4月份的利润为万元,A选项正确;
设一次函数解析式为
根据题意,图像过点(4,50)和(6,110)
则有
解得
∴一次函数解析式为,其斜率为30,即污改造完成后每月利润比前一个月增加万元,B选项正确;
治污改造完成前后,1-6月份的利润分别为200万元、100万元、万元、50万元、110万元,共有3个月的利润低于万元,C选项错误;
9月份的利润为万元,D选项正确;
故答案为C.
此题主要考查一次函数和反比例函数的实际应用,熟练掌握,即可解题.
8、C
【解析】
,
解不等式①得,x0).
故答案为(x>0).
本题考查了反比例函数的综合应用及等腰直角三角形的性质,全等三角形的判定与性质.利用配方法求出AO的长的最小值是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析,(2)当AB=AC时,四边形ADCF为矩形,理由见解析.
【解析】
(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;
(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.
【详解】
解:(1)证明:∵E是AD的中点,
∴AE=DE.
∵AF∥BC,
∴∠FAE=∠BDE,∠AFE=∠DBE.
在△AFE和△DBE中,,
∴△AFE≌△DBE(AAS).
∴AF=BD.
∵AF=DC,
∴BD=DC.
即:D是BC的中点.
(2)AB=AC,理由如下:
∵AF=DC,AF∥DC,
∴四边形ADCF是平行四边形.
∵AB=AC,BD=DC,
∴AD⊥BC即∠ADC=90°.
∴平行四边形ADCF是矩形.
考点:全等三角形的判定与性质;矩形的判定.
25、(1)证明见解析;(2)成立,证明见解析.
【解析】
解:(1)∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA,
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE
∴∠MEA=∠AFO,
∴Rt△BOE≌ Rt△AOF
∴OE=OF
(2)OE=OF成立
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA
又∵AM⊥BE,
∴∠F+∠MBF=90°=∠E+∠OBE
又∵∠MBF=∠OBE
∴∠F=∠E
∴Rt△BOE≌Rt△AOF
∴OE=OF
26、,-2.
【解析】
首先将括号里面通分,再将分子与分母分解因式进而化简得出答案.
【详解】
,
=
=
=,
当x=﹣2时,原式==﹣2.
此题主要考查了分式的化简求值,正确分解因式是解题关键.
题号
一
二
三
四
五
总分
得分
选手
甲
乙
丙
丁
方差(s2)
0.020
0.019
0.021
0.022
平均分(分)
中位数(分)
众数(分)
方差(分2)
七年级
a
85
b
S七年级2
八年级
85
c
100
160
时间(单位:小时)
4
3
2
1
0
人数
2
4
2
1
1
相关试卷
这是一份山东省临沂市临沂经济开发区九级2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省临沂市临沂经济开发区2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。