山东省临沂市太平中学2024年数学九年级第一学期开学检测试题【含答案】
展开这是一份山东省临沂市太平中学2024年数学九年级第一学期开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是( )
A.AD=BDB.∠A=30°C.∠ACB=90°D.△ABC是直角三角形
2、(4分)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
A.14B.7C.﹣2D.2
3、(4分)某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为( )
A.x(27﹣3x)=75B.x(3x﹣27)=75
C.x(30﹣3x)=75D.x(3x﹣30)=75
4、(4分)使分式有意义的的值是( )
A.B.C.D.
5、(4分)下列语句描述的事件中,是不可能事件的是( )
A.只手遮天,偷天换日B.心想事成,万事如意
C.瓜熟蒂落,水到渠成D.水能载舟,亦能覆舟
6、(4分)在数轴上表示不等式x≥-2的解集 正确的是( )
A.B.
C.D.
7、(4分)矩形、菱形、正方形都具有的性质是( )
A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等
8、(4分)已知关于x的不等式(2﹣a)x>1的解集是x<;则a的取值范围是( )
A.a>0B.a<0C.a<2D.a>2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在▱ABCD中,AB=10,BC=6,AC⊥BC,则▱ABCD的面积为_____.
10、(4分)已知:线段
求作:菱形,使得且.
以下是小丁同学的作法:
①作线段;
②分别以点,为圆心,线段的长为半径作弧,两弧交于点;
③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;
④连接,,.
则四边形即为所求作的菱形.(如图)
老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.
11、(4分)______.
12、(4分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.
13、(4分)如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
15、(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方作△DEA,且使DE∥AC,AE∥BD.
(1)求证:四边形DEAP是菱形;
(2)若AE=CD,求∠DPC的度数.
16、(8分)如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).
(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;
(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.
17、(10分)如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.
(1)m= ;
(2)求点C的坐标;
(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.
18、(10分)为传播“绿色出行,低碳生活”的理念,小贾同学的爸爸从家里出发,骑自行车去图书馆看书,图1表达的是小贾的爸爸行驶的路程(米)与行驶时间(分钟)的变化关系
(1)求线段BC所表达的函数关系式;
(2)如果小贾与爸爸同时从家里出发,小贾始终以速度120米/分钟行驶,当小贾与爸爸相距100米是,求小贾的行驶时间;
(3)如果小贾的行驶速度是米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出的取值范围。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线是由直线向上平移______个单位长度得到的一条直线.直线是由直线向右平移______个单位长度得到的一条直线.
20、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.
21、(4分)若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=_____.
22、(4分)如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.
23、(4分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数图像过点P(0,6),且平行于直线y=-2x
(1)求该一次函数的解析式
(2)若点A(,a)、B(2,b)在该函数图像上,试判断a、b的大小关系,并说明理由。
25、(10分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.
(1)如果b=﹣2,求k的值;
(2)试探究k与b的数量关系,并写出直线OD的解析式.
26、(12分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
(1)谁先出发早多长时间谁先到达B地早多长时间?
(2)两人在途中的速度分别是多少?
(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据中线的定义可判断A正确;根据直角三角形斜边上的中线等于斜边的一半和等腰三角形等边对等角可判断C和D正确;根据已知条件无法判断B是否正确.
【详解】
解:∵CD是△ABC的边AB上的中线,
∴AD=BD,故A选项正确;
又∵CD=AB,
∴AD=CD=BD,
∴∠A=∠ACD,∠B=∠BCD,
,故C选项正确;
∴△ABC是直角三角形,故D选项正确;
无法判断∠A=30°,故B选项错误;
故选:B.
本题考查直角三角形斜边上的中线的性质,等腰三角形的性质,三角形内角和定理.熟记直角三角形斜边上的中线等于斜边的一半是解决此题的关键.
2、D
【解析】
解不等式得到x≥m+3,再列出关于m的不等式求解.
【详解】
≤﹣1,
m﹣1x≤﹣6,
﹣1x≤﹣m﹣6,
x≥m+3,
∵关于x的一元一次不等式≤﹣1的解集为x≥4,
∴m+3=4,解得m=1.
故选D.
考点:不等式的解集
3、C
【解析】
设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解
【详解】
解:设矩形宽为xm,则矩形的长为(30﹣3x)m,
根据题意得:x(30﹣3x)=1.
故选:C.
本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.
4、D
【解析】
分式有意义的条件是分母不等于0,即x﹣1≠0,解得x的取值范围.
【详解】
若分式有意义,则x﹣1≠0,解得:x≠1.
故选D.
本题考查了分式有意义的条件:当分母不为0时,分式有意义.
5、A
【解析】
不可能事件是指在一定条件下,一定不发生的事件.
【详解】
A、是不可能事件,故选项正确;
B、是随机事件,故选项错误;
C、是随机事件,故选项错误;
D、是随机事件,故选项错误.
故选:A.
此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6、D
【解析】
根据在数轴上表示不等式解集的方法利用排除法进行解答.
【详解】
∵不等式x⩾−2中包含等于号,
∴必须用实心圆点,
∴可排除A. C,
∵不等式x⩾−2中是大于等于,
∴折线应向右折,
∴可排除B.
故选:D.
此题考查在数轴上表示不等式的解集,解题关键在于掌握数轴的表示方法
7、B
【解析】
矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.
【详解】
解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.
故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.
故选:B.
本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.
8、D
【解析】
根据已知不等式的解集,结合x的系数确定出1-a为负数,求出a的范围即可.
【详解】
∵关于x的不等式(1﹣a)x>1的解集是x< ,
∴1﹣a<0,
解得:a>1.
故选:D.
考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底高,可求面积。
【详解】
在Rt△ABC中,AB=10,BC=6,
利用勾股定理可得AC=2.
根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.
故答案为1.
本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。
10、三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形
【解析】
利用作法和等边三角形的判定与性质得到∠A=60°,然后根据菱形的判定方法得到四边形ABCD为菱形.
【详解】
解:由作法得AD=BD=AB=a,CD=CB=a,
∴△ABD为等边三角形,AB=BC=CD=AD,
∴∠A=60°,四边形ABCD为菱形,
故答案为:三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形.
本题考查了尺规作图,及菱形的判定,熟练掌握尺规作图,及菱形的判定知识是解决本题的关键.
11、
【解析】
先逐项化简,再进一步计算即可.
【详解】
原式=-1-3+1= .
故答案为:.
本题考查了实数的混合运算,正确化简各数是解答本题的关键.
12、8.
【解析】
直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.
【详解】
如图所示:
∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,
∴可得AD=AB,故△ABD是等边三角形,
则AB=AD=4,
故BO=DO=2,
则AO=,
故AC=4,
则菱形ABCD的面积是:×4×4=8.
故答案为:8.
此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.
13、1
【解析】
根据四边形ABCD是矩形,可知因为所以△AOB是等边三角形,由三线合一性质可知的长度
【详解】
∵四边形ABCD是矩形,
∴△AOB是等边三角形,
故答案为1.
本题主要考查了矩形的性质,等边三角形的性质,熟知矩形的对角线相等且相互平分和等边三角形三线合一的性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)甲商品每件进价30元,乙商品每件进价70元;(2)甲商品进80件,乙商品进20件,最大利润是1200元.
【解析】
(1)根据购进甲商品1件和乙商品3件共需240元,甲商品2件和乙商品1件共需130元可以列出相应的方程组,从而可以求得甲、乙两种商品每件的进价分别是多少元;
(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.
【详解】
(1)设商品每件进价x元,乙商品每件进价y元,得
解得:,
答:甲商品每件进价30元,乙商品每件进价70元;
(2)设甲商品进a件,乙商品(100﹣a)件,由题意得,
a≥4(100﹣a),
a≥80,
设利润为y元,则,
y=10 a+20(100﹣a)=﹣10 a+2000,
∵y随a的增大而减小,
∴要使利润最大,则a取最小值,
∴a=80,
∴y=2000﹣10×80=1200,
答:甲商品进80件,乙商品进20件,最大利润是1200元.
本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
15、 (1)见解析;(2)∠DPC=60°.
【解析】
试题分析:(1)由题中由已知条件可得其为平行四边形,再加上一组邻边相等即为菱形.
(2)由(1)中的结论即可证明△PDC为等边三角形,从而得出∠DPC=60°.
试题解析:(1)∵DE∥AC,AE∥BD,
∴四边形DEAP为平行四边形,
∵ABCD为矩形,
∴AP=AC,DP=BD,AC=BD,
∴AP=PD,PD=CP,
∴四边形DEAP为菱形;
∵四边形DEAP为菱形,
∴AE=PD,
∵AE=CD,
∴PD=CD,
∵PD=CP(上小题已证),
∴△PDC为等边三角形,
∴∠DPC=60°.
考点:菱形的判定.
16、(1)AE+CF=EF,证明见解析;(2),理由见解析.
【解析】
(1)由题干中截长补短的提示,再结合第(1)问的证明结论,在第二问可以用截长补短的方法来构造全等,从而达到证明结果.
(2)同理作辅助线,同理进行即可,直接写出猜想,并证明.
【详解】
(1)图2猜想:AE+CF=EF,
证明:在BC的延长线上截取CA'=AE,连接A'D,
∵∠DAB=∠BCD=90°,
∴∠DAB=∠DCA'=90°,
又∵AD=CD,AE=A'C,
∴△DAE≌△DCA'(SAS),
∴ED=A'D,∠ADE=∠A'DC,
∵∠ADC=120°,
∴∠EDA'=120°,
∵∠EDF=60°,
∴∠EDF=∠A'DF=60°,
又DF=DF,
∴△EDF≌△A'DF(SAS),
则EF=A'F=FC+CA'=FC+AE;
(2)如图3,AE+CF=EF,
证明:在BC的延长线上截取CA'=AE,连接A'D,
∵∠DAB与∠BCD互补,∠BCD+∠DCA'=180°
∴∠DAB=∠DCA',
又∵AD=CD,AE=A'C,
∴△DAE≌△DCA'(SAS),
∴ED=A'D,∠ADE=∠A'DC,
∵∠ADC=2α,
∴∠EDA'=2α,
∵∠EDF=α,
∴∠EDF=∠A'DF=α
又DF=DF,
∴△EDF≌△A'DF(SAS),
则EF=A'F=FC+CA'=FC+AE.
本题是常规的角含半角的模型,解决这类问题的通法:旋转(截长补短)构造全等即可,题目所给例题的思路,为解决此题做了较好的铺垫.
17、(1)1;(2)C的坐标为(3,0);(3)(﹣2,0).
【解析】
试题分析:(1)把点代入求值.(2)先利用反比例函数求出A,B,点坐标,再利用待定系数法求直线方程.(3)假设存在E点,因为ACD是直角三角形,假设ABE也是直角三角形,利用勾股定理分别计算A,B,C,是直角时AB长度,均与已知矛盾,所以不存在.
试题解析:
解:(1)∵点A(1,1)在反比例函数y=(x>0)的图象上,
∴m=1×1=1,
故答案为1.
(2)∵点B(2,a)在反比例函数y=的图象上,
∴a==2,
∴B(2,2).
设过点A、B的直线的解析式为y=kx+b,
∴,解得:,
∴过点A、B的直线的解析式为y=﹣2x+2.
当y=0时,有﹣2x+2=0,
解得:x=3,
∴点C的坐标为(3,0).
(3)假设存在,设点E的坐标为(n,0).
①当∠ABE=90°时(如图1所示),
∵A(1,1),B(2,2),C(3,0),
∴B是AC的中点,
∴EB垂直平分AC,EA=EC=n+3.
由勾股定理得:AD2+DE2=AE2,即12+(x+1)2=(x+3)2,
解得:x=﹣2,
此时点E的坐标为(﹣2,0);
②当∠BAE=90°时,∠ABE>∠ACD,
故△EBA与△ACD不可能相似;
③当∠AEB=90°时,∵A(1,1),B(2,2),
∴AB=,2>,
∴以AB为直径作圆与x轴无交点(如图3),
∴不存在∠AEB=90°.
综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).
18、(1);
(2)小贾的行驶时间为分钟或分钟;
(3)
【解析】
(1)结合图形,运用待定系数法即可得出结论;
(2)设小贾的行驶时间为x分钟,根据题意列方程解答即可;
(3)分别求出当OD过点B、C时,小贾的速度,结合图形,利用数形结合即可得出结论.
【详解】
(1)设线段BC所表达的函数关系式为y=kx+b,
根据题意得,
解得,
∴线段BC所表达的函数关系式为y=200x-1500;
(2)设小贾的行驶时间为x分钟,
根据题意得150x-120x=100或1500-120x=100或120x-1500=100或120x-150(x-5)=100或150(x-5)-120x=100或3000-120x=100,
解得x=或x=或x=或x=或x=或x=,
即当小贾与爸爸相距100米时,小贾的行驶时间为分钟或分钟或分钟或分钟或分钟或分钟;
(3)如图:
当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);
当线段OD过点C时,小贾的速度为3000÷22.5=(米/分钟).
结合图形可知,当100<v<时,小贾在途中与爸爸恰好相遇两次(不包括家、图书馆两地).
本题考查了一次函数的应用;熟练掌握一次函数的图象和性质是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2, 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:直线是由直线向上平移 2个单位长度得到的一条直线.由直线向右平移 1个单位长度得到.
故答案是:2;1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
20、()n.
【解析】
第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.
【详解】
第1个正方形的边长是1,对角线长为;
第二个正方形的边长为,对角线长为()2=2
第3个正方形的边长是2,对角线长为2=()3;…,
∴第n个正方形的对角线长为()n;
故答案为()n.
本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.
21、1
【解析】
直接把x=−1代入一元二次方程ax2−bx−1=0中即可得到a+b的值.
【详解】
解:把x=﹣1代入一元二次方程ax2﹣bx﹣1=0得a+b﹣1=0,
所以a+b=1.
故答案为1
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
22、
【解析】
过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.
【详解】
解:如图,过D作DF⊥AB于F,
∵AD平分∠BAC,∠C=90°,
∴DF=CD=2.
∵Rt△ABC中,∠C=90°,AC=BC,
∴∠ABC=45°,
∴△BDF是等腰直角三角形,
∵BF=DF=2,BD=DF=2,
∴BC=CD+BD=2+2,AC=BC=2+2.
∵AE//BC,BE⊥AD,
∴四边形ADBE是平行四边形,
∴AE=BD=2,
∴平行四边形ADBE的面积= .
故答案为.
本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.
23、y=2x+1.
【解析】
由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,
故答案为y=2x+1.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-2x+6 (2)答案见解析
【解析】
(1)根据两一次函数图像平行,可得到k的值相等,因此设一次函数解析式为y=-2x+b,再将点P的坐标代入函数解析式就可求出b的值,就可得到函数解析式;
(2)利用一次函数的性质:k<0时,y随x的增大而减小,比较点A,B的横坐标的大小,就可求得a,b的大小关系
【详解】
(1)解:∵ 一次函数图像过点P(0,6),且平行于直线y=-2x,
∴设这个一次函数解析式为y=-2x+b
∴b=6
∴该一次函数解析式为y=-2x+6;
(2)解:∵一次函数解析式为y=-2x+6,k=-2<0
∴y随x的增大而减小;
∵ 点A(,a)、B(2,b)在该函数图像上且,
∴a>b
此题主要考查了一次函数的图象和性质,关键是掌握一次函数图象平行时,k值相等.
25、解:(1)当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A(1,0),B(0,﹣2),
∵△AOB≌△ACD,∴CD=DB=2,AO=AC=1。∴点D的坐标为(2,2)。
∵点D在双曲线( x>0)的图象上,∴k=2×2=4。
(2)直线y=2x+b与坐标轴交点的坐标为A(,0),B(0,b),
∵△AOB≌△ACD,∴CD=OB= b,AO=AC=,
∴点D的坐标为(﹣b,﹣b)。
∵点D在双曲线( x>0)的图象上,
∴,即k与b的数量关系为:。
直线OD的解析式为:y=x。
【解析】
试题分析:(1)首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,由点D在双曲线( x>0)的图象上求出k的值。
(2)首先直线y=2x+b与坐标轴交点的坐标为A(,0),B(0,b),再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b之间的关系,进而也可以求出直线OD的解析式。
26、(1)甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲速为10千米/小时,乙速为40千米/小时;(3)y甲=10x,y乙=40x﹣1.
【解析】
(1)结合图象,依据点的坐标代表的意思,即可得出结论;
(2)由速度=路程÷时间,即可得出结论;
(3)根据待定系数法,可求出乙的函数表达式,结合甲的速度依据甲的图象过原点,可得出甲的函数表达式.
【详解】
解:(1)结合图象可知,甲先出发,早了3小时;乙先到达B地,早了3小时;
(2)甲的速度:80÷8=10km/h,
乙的速度:80÷(5-3)=40km/h.
(3)设y甲=kx,由图知:8k=80,k=10
∴y甲=10x;
设y乙=mx+n,由图知:
解得
∴y乙=40x﹣1
答:甲、乙在行驶过程中的路程与时间之间的函数关系式分别为:
y甲=10x,y乙=40x﹣1.
本题考查了一次函数中的相遇问题、用待定系数法求函数表达式,解题的关键是:(1)明白坐标系里点的坐标代表的意义;(2)知道速度=路程÷时间;(3)会用待定系数法求函数表达式.本题难度不大,属于基础题,做此类问题是,结合函数图象,找出点的坐标才能做对题.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份山东省临沂太平中学2025届九上数学开学调研试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省临沂市郯城县数学九年级第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省临沂市九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。