![山东省龙口市2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16288102/0-1729811415493/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省龙口市2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16288102/0-1729811415549/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省龙口市2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16288102/0-1729811415574/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省龙口市2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】
展开
这是一份山东省龙口市2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题是假命题的是( )
A.四边都相等的四边形为菱形B.对角线互相平分的四边形为平行四边形
C.对角线相等的平行四边形为矩形D.对角线互相垂直且相等的四边形为正方形
2、(4分)一次函数y=﹣3x+5的图象不经过的象限是第( )象限
A.一 B.二 C.三 D.四
3、(4分)下列图形具有稳定性的是( )
A.三角形B.四边形C.五边形D.六边形
4、(4分)小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是( )
A.13千米B.14千米C.15千米D.16千米
5、(4分)某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是( )
A.B.
C.D.
6、(4分)计算的结果是( )
A.0B.1C.2 D.2
7、(4分)在“爱我莒州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲8、7、9、8、8; 乙:7、9、6、9、9,则下列说法中错误的是( )
A.甲得分的众数是8B.乙得分的众数是9
C.甲得分的中位数是9D.乙得分的中位数是9
8、(4分)已知,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.当∠APB=45°时,PD的长是( );
A.B.C.D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:___________.
10、(4分)如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.
11、(4分)有一个质地均匀的正方体,其六个面上分别写着直角梯形、等腰梯形、矩形、正方形、菱形、平行四边形,投掷这个正方体后,向上的一面的图形是对角线相等的图形的概率是_______;
12、(4分)已知:正方形,为平面内任意一点,连接,将线段绕点顺时针旋转得到,当点,,在一条直线时,若,,则________.
13、(4分)已知一次函数的图象经过两点,,则这个函数的表达式为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)我市射击队为了从甲、 乙 两名运动员中选出一名运动员参加省运动会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:
你认为应选择哪位运动员参加省运动会比赛.
15、(8分)如图,已知分别是△的边上的点,若,,.
(1)请说明:△∽△;
(2)若,求的长.
16、(8分)如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.
(1)判断△BEC的形状,并说明理由?
(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;
(3)求四边形EFPH的面积.
17、(10分)在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).
(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.若将△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是________.
(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.
18、(10分)如图,在四边形ABCD中,BD为一条对角线,且,,E为AD的中点,连接BE.
(1)求证:四边形BCDE为菱形;
(2)连接AC,若AC平分,,求AC的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数y=﹣的自变量x的取值范围是_____.
20、(4分)已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.
21、(4分)已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,求关于x的不等式ax+b>kx的解是____________.
22、(4分)如图,平行四边形的对角线相交于点,且,过点作,交于点.若的周长为,则______.
23、(4分)如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(AC>BC).已知AB=10cm,则AC的长约为__________cm.(结果精确到0.1cm)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形
25、(10分)如图所示,的顶点在的网格中的格点上.
(1)画出绕点A逆时针旋转得到的;
(2)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为中心对称图形.
26、(12分)知y+3与5x+4成正比例,当x=1时,y=—18,
(1)求y关于x的函数关系。
(2)若点(m,—8)在此图像上,求m的值。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据矩形、平行四边形、菱形、正方形的判定定理判断即可.
【详解】
A、根据菱形的判定定理可知是真命题;
B、根据平行四边形的判定定理可知是真命题;
C、根据矩形的的判定定理可知是真命题;
D、根据正方形的判定定理可知是假命题.
故选D
本题考查假命题的定义,涉及了矩形、平行四边形、菱形、正方形的判定定理.
2、C
【解析】
由k<0,可得一次函数经过二、四象限,再由b>0,一次函数经过第一象限,即可得到直线不经过的象限.
【详解】
∵直线y=﹣3x+5经过第一、二、四象限,
∴不经过第三象限,
故选C.
本题考查了一次函数图象与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
3、A
【解析】
由题意根据三角形具有稳定性解答.
【详解】
解:具有稳定性的图形是三角形.
故选:A.
本题考查三角形具有稳定性,是基础题,难度小,需熟记.
4、C
【解析】
由纵坐标看出,返回时离家的距离是30千米,
由横坐标看出,返回时所用的时间是15−13=2小时,
由路程与时间的关系,得
返回时的速度是30÷2=15千米,
由时间、速度的关系得15×1=15千米,
故选:C.
5、D
【解析】
试题分析:由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.
解:依题意,0~20min散步,离家路程从0增加到900m,
20~30min看报,离家路程不变,
30~45min返回家,离家从900m路程减少为0m,
且去时的速度小于返回的速度,
故选D.
【点评】此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.
6、B
【解析】
根据零指数幂的意义即可解答.
【详解】
.
本题主要考查了零指数幂的意义,记住任何非零数的零指数幂等于1是解答本题的关键.
7、C
【解析】
众数是在一组数据中出现次数最多的数;将一组数据按从小到大顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数称为中位数;
【详解】
∵甲8、7、9、8、8;
∴甲的众数为8,中位数为8
∵乙:7、9、6、9、9
∴已的众数为9,中位数为9
故选C.
本题考查的是众数,中位数,熟练掌握众数,中位数是解题的关键.
8、A
【解析】
过P作PB的垂线,过A作PA的垂线,两条垂线相于与E,连接BE,由∠APB=45°可得∠EPA=45°,可得△PAE是等腰直角三角形,即可求出PE的长,根据角的和差关系可得∠EAB=∠PAD,利用SAS可证明△PAD≌△EAB,可得BE=PD,利用勾股定理求出BE的长即可得PD的长.
【详解】
过P作PB的垂线,过A作PA的垂线,两条垂线相交与E,连接BE,
∵∠APB=45°,EP⊥PB,
∴∠EPA=45°,
∵EA⊥PA,
∴△PAE是等腰直角三角形,
∴PA=AE,PE=PA=2,
∵四边形ABCD是正方形,
∴∠EAP=∠DAB=90°,
∴∠EAP+∠EAD=∠DAB+∠EAD,即∠PAD=∠EAB,
又∵AD=AB,PA=AE,
∴△PAD≌△EAB,
∴PD=BE===2,
故选A.
本题考查正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质及勾股定理,熟练掌握相关性质并正确作出辅助线是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据二次根式的乘法,可得第二个空的答案;
【详解】
;
故答案为:.
此题考查二次根式的性质与化简,解题关键在于掌握运算法则.
10、10
【解析】
根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.
【详解】
∵翻折,∴,,
又∵,
∴,
∴.设,则.
在中,,即,
解得,
∴,
∴.
此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.
11、
【解析】
【分析】先求出总的情况和对角线相等的情况,再根据概率公式可求得.
【详解】因为,出现的图形共有6种情况,对角线相等的有(等腰梯形,正方形,矩形)3这情况,所以,P(对角线相等)=
故答案为:
【点睛】本题考核知识点:概率.解题关键点:掌握概率的求法.
12、或
【解析】
分两种情况讨论:
(1)当点G在线段BD上时,如下图连接EG交CD于F;(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F.根据两种情况分别画出图形,证得是等腰直角三角形,求出DF=EF=2,然后在直角三角形ECF中利用勾股定理即可求出CE的长.
【详解】
解:分两种情况讨论:
(1)当点G在线段BD上时,如下图连接EG交CD于F
∵ABCD是正方形
∴CD=AD=4
∵线段绕点顺时针旋转得到
∴是等腰直角三角形,DE=DG=
∴DF=EF=2
∴CF=CD-DF=4-2=2
∴CE=
(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F
∵ABCD是正方形
∴CD=AD=4
∵线段绕点顺时针旋转得到
∴是等腰直角三角形,DE=DG=
∴DF=EF=2
∴CF=CD+DF=4+2=6
∴CE=
综上所述,CE的长为或
本题考查了正方形的性质、旋转的性质及等腰直角三角形的性质,通过旋转证得是等腰直角三角形进行有关的计算是解题的关键.
13、
【解析】
设一次函数的解析式是:y=kx+b,然后把点,代入得到一个关于k和b的方程组,从而求得k、b的值,进而求得函数解析式.
【详解】
解:设一次函数的解析式是:y=kx+b,
根据题意得:,
解得:,
则一次函数的解析式是:.
故答案是:.
本题考查了待定系数法求函数的解析式,先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.
三、解答题(本大题共5个小题,共48分)
14、应选择甲运动员参加省运动会比赛.
【解析】
试题分析:先分别计算出甲和乙成绩的平均数,再利用方差公式求出甲和乙成绩的方差,最后根据方差的大小进行判断即可.
解:甲的平均成绩是:(10+9+8+9+9)=9.
乙的平均成绩是:(10+8+9+8+10)=9.
甲成绩的方差是:
=[(10-9)2+(9-9)2+(8-9)2+(9-9)2+(9-9)2]÷5=0.4.
乙成绩的方差是:
=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2]÷5=0.8.
∵ ,
∴ 甲的成绩较稳定,
∴ 应选择甲运动员参加省运动会比赛.
点睛:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数的程度越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数的程度越小,即波动越小,数据越稳定.
15、(1)证明见解析(2)12
【解析】
(1)根据∠A,∠C利用三角形内角和定理求得∠B=60°,再根据∠A是公共角即可求证△ADE∽△ABC;
(2)根据△ADE∽△ABC,利用相似三角形对应边成比例,将已知条件代入即可得出答案.
【详解】
(1)在中,
△ADE∽△ABC
(2)△ADE∽△ABC,
16、(1)△BEC是直角三角形,理由见解析(2)四边形EFPH为矩形,理由见解析(3)
【解析】(1)△BEC是直角三角形,理由略
(2)四边形EFPH为矩形
证明:在矩形ABCD中,∠ABC=∠BCD=900
∴PA=, PD=2 ∵AD=BC=5
∴AP2+PD2=25=AD2 ∴∠APD=900 (3分)
同理∠BEC=900
∵DE=BP ∴四边形BPDE为平行四边形
∴BE∥PD (4分)
∴∠EHP=∠APD=900,又∵∠BEC=900
∴四边形EFPH为矩形 (5分)
(3)在RT△PCD中∠FfPD
∴PD·CF=PC·CD ∴CF==
∴EF=CE-CF=-= (7分)
∵PF==
∴S四边形EFPH=EF·PF=
(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;
(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;
(2)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.
17、(1),见解析;(2)见解析.
【解析】
(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再利用勾股定理列式计算即可得解;
(2)根据网格结构找出点A、B、C以原点为对称中心的对称点A2、B2、C2的位置,然后顺次连接即可.
【详解】
解:(1)△A1B1C1如图所示,
平移距离为:=;
故答案为:.
(2)如(1)图中所作.
本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
18、 (1)详见解析(2)
【解析】
(1) 题干中由且可知,一组对边平行且相等的四边形是平行四边形,则四边形BCDE是平行四边形,又知BE是直角三角形斜边的中线,直角三角形斜边的中线等于斜边的一半,则得到BE=ED,从而再用一组邻边相等的平行四边形是菱形证明即可.
(2)通过 DE∥BC和 AC平分,可得到∠BAC=∠ACB,从而由等角对等边得到AB=BC=1,则此时直角三角形ABD,有一个执教不是斜边的一半,则可知这个直角边对应的角是30°,找到30°才是题目的突破口,然后依次得到角度的关系,证明得到三角形ACD是直角三角形,再用勾股定理解得AC的长.
【详解】
(1)证明:∵DE∥BC且DE=BC(已知)
∴四边形BCDE是平行四边形(一组对边平行且相等的四边形是平行四边形)
又∵E为直角三角形斜边AD边的中点(已知)
∴BE=AD,即BE=DE(直角三角形斜边的中线等于斜边的一半)
∴平行四边形四边形BCDE是菱形(一组邻边相等的平行四边形是菱形)
(2)
连接AC,如图可知:
∵DE∥BC(已知)
∴∠DAC=∠ACB(两直线平行内错角相等)
又∵AC平分(已知)
∴∠BAC=∠DAC(角平分线的定义)
即∠BAC=∠ACB(等量代换)
∴AB=BC=1(等角对等边)
由(1)可知:AD=2ED=2BC=2
在直角三角形中AB=1,AD=2
∴∠ADB=30°(直角三角形中,若一个直角边是斜边 一半,则这个直角边所对的角是30°)
∴∠BAD=60°(直角三角形两锐角互余)
即∠CAD=∠BAD=30°(角平分线的定义),∠ADC=2∠ADB=60°(菱形的性质)
所以三角形ADC是直角三角形.
则由可知:
本题为综合性的几何证明试题,运用到的重点知识点有,菱形的判定定理,菱形的性质,直角三角形斜边中线定理,30°角定理,勾股定理,注意证明过程中,条理清楚,因果对应,灵活运用才是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x<2
【解析】
令2-x>0,解这个不等式即可求出自变量x的取值范围.
【详解】
由题意得,
2-x>0,
∴x<2.
故答案为:x<2.
本题考查了常量与变量,根据实际问题的数量关系用解析式法表示实际问题中两变化的量之间的关系,常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.
20、1.
【解析】
连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.
【详解】
如图所示:连接BD.
∵E,F分别是AB,AD的中点,EF=5,
∴BD=2EF=1.
∵ABCD为矩形,
∴AC=BD=1.
故答案为:1.
本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.
21、x<-1.
【解析】
试题解析:∵由函数图象可知,当x<-1时一次函数y=ax+b在一次函数y=kx图象的上方,
∴关于x的不等式ax+b>kx的解是x<-1.
考点:一次函数与一元一次不等式.
22、6.
【解析】
根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,即可解答.
【详解】
∵ABCD是平行四边形,
∴OA=OC,AD=BC,AB=CD
∵OM⊥AC,
∴AM=MC.
∴△CDM的周长=AD+CD=9,
BC=9-3=6
故答案为6.
此题考查平行四边形的性质,解题关键在于得出MC=MA
23、6.2
【解析】
根据黄金分割的计算公式正确计算即可.
【详解】
∵点C分线段AB近似于黄金分割点(AC>BC),
∴AC=,
∵AB=10cm,
∴AC=,
故答案为:6.2.
此题考查黄金分割点的计算公式,正确掌握公式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
要证明四边形BFDE是平行四边形,可以证四边形BFDE有两组对边分别相等,即证明BF=DE,EB=DF即可得到.
【详解】
证明:∵ABCD是平行四边形,
∴AB=DC,AB∥DC,
∴∠BAF=∠DCE,
又∵对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF,
所以在△ABF和△DCE中,
,
∴△ABF≌△CDE(SAS),
∴BF=DE,
同理可证:△ADF≌△CBE(SAS),
∴DF=BE,
∴四边形BFDE是平行四边形.
本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学知识,掌握三角形全等的判定或者两直线平行的判定对证明这道题目有着至关重要的作用.
25、(1)见解析;(2)见解析.
【解析】
(1)由题意可知旋转中心、旋转角、旋转方向,根据旋转的画图方法作图即可;
(2)如图有三种情况,构造平行四边形即可.
【详解】
解:(1)如图即为所求
(2)如图,D、D’、D’’均为所求.
本题考查了图形的旋转及中心对称图形,熟练掌握作旋转图形的方法及中心对称图形的定义是解题的关键.
26、 (1) y=x;
(2) m=.
【解析】
(1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
(2)直接把点(m,-8)代入(1)中一次函数的解析式即可.
【详解】
(1)∵y+3与5x+4成正比例,
∴设y+3=k(5x+4),
∵当x=1时,y=−18,
∴−18+3=k(5+4),解得k=,
∴y关于x的函数关系式为: (5x+4)=y+3,即y=x;
(2)∵点(m,−8)在此图象上,
∴−8=m,解得m=.
本题考查一次函数,解题的关键是掌握待定系数法求解析式.
题号
一
二
三
四
五
总分
得分
甲
10
9
8
9
9
乙
10
8
9
8
10
相关试卷
这是一份山东省济南兴济中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省滑县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省烟台龙口市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)