山东省青岛市集团校联考2024-2025学年数学九上开学考试模拟试题【含答案】
展开这是一份山东省青岛市集团校联考2024-2025学年数学九上开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果分式有意义,则x的取值范围是( )
A.x=﹣3B.x>﹣3C.x≠﹣3D.x<﹣3
2、(4分)已知点,,三点都在反比例函数的图像上,则下列关系正确的是( ).
A.B.C.D.
3、(4分)如图,在中,点在边上,AE交于点,若DE=2CE,则( )
A.B. C.D.
4、(4分)永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是
A.28,27B.28,28C.28,30D.27,28
5、(4分)对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设( )
A.a不平行bB.b不平行cC.a⊥cD.a不平行c
6、(4分)如图,在菱形中,对角线、相交于点,,,过作的平行线交的延长线于点,则的面积为( )
A.22B.24C.48D.44
7、(4分)如图,点A,B分别在函数y=(k1>0)与函数y=(k2<0)的图象上,线段AB的中点M在x轴上,△AOB的面积为4,则k1﹣k2的值为( )
A.2B.4C.6D.8
8、(4分)在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据2,3,4,5,3的众数为__________.
10、(4分)如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为_____.
11、(4分)某小组7名同学的英语口试成绩(满分30分)依次为,,,,,,,则这组数据的中位数是_______.
12、(4分)一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为______.
13、(4分)矩形的一边长是3.6㎝, 两条对角线的夹角为60º,则矩形对角线长是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
15、(8分)如图,E、F、 G、H分别为四边形ABCD四边之中点.
(1)求证:四边形EFGH为平行四边形;
(2)当AC、BD满足______时,四边形EFGH为矩形.
16、(8分)解不等式组: ,并把解集在数轴上表示出来.
17、(10分)当为何值时,分式的值比分式的值大2?
18、(10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差,数据:11,15,18,17,10,19的方差:
(1)分别求甲、乙两段台阶的高度平均数;
(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?
(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线l与直线y=3﹣2x平行,且在y轴上的截距是﹣5,那么直线l的表达式是_____.
20、(4分)如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________
21、(4分)______.
22、(4分)将2019个边长为2的正方形,按照如图所示方式摆放,O1,O2,O3,O4,O5,…是正方形对角线的交点,那么阴影部分面积之和等于_____.
23、(4分)已知点,点,若线段AB的中点恰好在x轴上,则m的值为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.
25、(10分)近年来,共享汽车的出现给人们的出行带来了便利,一辆型共享汽车的先期成本为8万元,如图是其运营收入(元)与运营支出(元)关于运营时间(月)的函数图象.其中,一辆型共享汽车的盈利(元)关于运营时间(月)的函数解析式为
(1)根据以上信息填空:与的函数关系式为_________________;
(2)经测试,当,共享汽车在这个范围内运营相对安全及效益较好,求当,一辆型共享汽车的盈利(元)关于运营时间(月)的函数关系式;(注:一辆共享汽车的盈利=运营收入-运营支出-先期成本)
(3)某运营公司有型,型两种共享汽车,请分析一辆型和一辆型汽车哪个盈利高;
26、(12分)长沙市的“口味小龙虾”冠绝海内外,如“文和友老长沙龙虾馆”订单排队上千号.某衣贸市场甲、乙两家农贸商店售卖小龙虾,甲、乙平时以同样的价格出售品质相同的小龙虾,“中非贸易博览会”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.
(1)请求出y甲,y乙关于x的函数关系式;
(2)“中非贸易博览会”期间,如果你是龙虾馆采购员,如何选择甲、乙两家商店购买小龙虾更省钱?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据分母不等于零时分式有意义,可得答案.
【详解】
由题意,得:x+1≠0,
解得:x≠﹣1.
故选C.
本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.
2、B
【解析】
解:∵,∴,,即.故选B.
3、D
【解析】
根据DE=2CE可得出DE=CD,再由平行四边形的性质得出CD=AB,从而由即可得出答案.
【详解】
解:∵DE=2CE,
∴DE=CD,
又∵,AB=CD,
∴.
故选:D.
本题考查平行四边形的性质及平行线分线段成比例的知识,解答本题的关键是根据DE=2CE得出的比值,难度一般.
4、B
【解析】
根据众数和中位数的意义进行分析.
【详解】
27,28,30,31,28,30,28,中28出现次数最多,28再中间,则这组数据的众数和中位数分别是28,28.
故选:28,28.
本题考核知识点:众数和中位数. 解题关键点:理解众数和中位数的意义.
5、D
【解析】
用反证法进行证明;先假设原命题不成立,本题中应该先假设a不平行c,由此即可得答案.
【详解】
直线a,c的位置关系有平行和不平行两种,因而a∥c的反面是a与c不平行,
因此用反证法证明“a∥c”时,应先假设a与c不平行,
故选D.
本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
6、B
【解析】
先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.
【详解】
解:∵AD∥BE,AC∥DE,
∴四边形ACED是平行四边形,
∴AC=DE=6,
在RT△BCO中,BO=,即可得BD=8,
又∵BE=BC+CE=BC+AD=10,
∴△BDE是直角三角形,
∴S△BDE=.
故答案为:B.
此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.
7、D
【解析】
过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D,然后根据平行与中点得出OC=OD,设点A(a,d),点B(b,﹣d),代入到反比例函数中有k1=ad,k2=﹣bd,然后利用△AOB的面积为4得出ad+bd=8,即可求出k1﹣k2的值.
【详解】
过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D
∴AC∥BD∥x轴
∵M是AB的中点
∴OC=OD
设点A(a,d),点B(b,﹣d)
代入得:k1=ad,k2=﹣bd
∵S△AOB=4
∴
整理得ad+bd=8
∴k1﹣k2=8
故选:D.
本题主要考查反比例函数与几何综合,能够根据△AOB的面积为4得出ad+bd=8是解题的关键.
8、B
【解析】
根据中心对称图形的概念解答即可.
【详解】
选项A,是轴对称图形,不是中心对称图形;选项B,不是轴对称图形,是中心对称图形;选项C,不是轴对称图形,不是中心对称图形;选项D,不是轴对称图形,不是中心对称图形.
故选B.
本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.
【详解】
本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.
故答案为1.
众数是指一组数据中出现次数最多的数据.
10、1.
【解析】
设A(m,),则B(﹣mk,),设AB交y轴于M,利用平行线的性质,得到AM和MB的比值,即可求解.
【详解】
解:设A(m,),则B(﹣mk,),设AB交y轴于M.
∵EM∥BC,
∴AM:MB=AE:EC=1:1,
∴﹣m:(﹣mk)=1:1,
∴k=1,
故答案为1.
本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.
11、1
【解析】
对于中位数,先将数据按从小到大的顺序排列,找出最中间的一个数(或最中间的两个数)即可.
【详解】
这组数据从小到大排列顺序为:23,25,25,1,27,29,30,中间一个数为1,所以这组数据的中位数为1.
故答案为:1
考核知识点:中位数.理解中位数的定义是关键.
12、x≥﹣1
【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b≥kx解集.
【详解】
两个条直线的交点坐标为(−1, 2),且当x≥−1时,直线y=kx在y=ax+b直线的下方,故不等式ax+b≥kx的解集为x≥−1.
故答案为x≥−1.
本题考查了一次函数与一元一次不等式的知识点,解题的关键是根据图象可知一次函数与一元一次不等式的增减性.
13、7.2cm或cm
【解析】
①边长3.6cm为短边时,
∵四边形ABCD为矩形,
∴OA=OB,
∵两对角线的夹角为60°,
∴△AOB为等边三角形,
∴OA=OB=AB=3.6cm,
∴AC=BD=2OA=7.2cm;
②边长3.6cm为长边时,
∵四边形ABCD为矩形
∴OA=OB,
∵两对角线的夹角为60°,
∴△AOB为等边三角形,
∴OA=OB=AB,BD=2OB,∠ABD=60°,
∴OB=AB= ,
∴BD=;
故答案是:7.2cm或cm.
三、解答题(本大题共5个小题,共48分)
14、(1)y=200x+74000(10≤x≤30)
(2)有三种分配方案,
方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
【解析】
(1)根据题意和表格中的数据可以得到y关于x的函数关系式;
(2)根据题意可以得到相应的不等式,从而可以解答本题;
(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.
【详解】
解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
(2)由题意可得,
200x+74000≥79600,得x≥28,
∴28≤x≤30,x为整数,
∴x=28、29、30,
∴有三种分配方案,
方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
理由:∵y=200x+74000中y随x的增大而增大,
∴当x=30时,y取得最大值,此时y=80000,
∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.
15、(1)见解析;(2)AC⊥BD
【解析】
(1)连接BD,根据中位线的性质可得EH∥BD,EH=,FG∥BD,FG=,从而得出EH∥FG,EH= FG,然后根据平行四边形的判定定理即可证出结论;
(2)当AC⊥BD时,连接AC,根据中位线的性质可得EF∥AC,从而得出EF⊥BD,然后由(1)的结论可证出EF⊥EH,最后根据有一个角是直角的平行四边形是矩形即可证出结论.
【详解】
(1)证明:连接BD
∵E、F、 G、H分别为四边形ABCD四边的中点
∴EH是△ABD的中位线,FG是△CBD的中位线
∴EH∥BD,EH=,FG∥BD,FG=
∴EH∥FG,EH= FG
∴四边形EFGH为平行四边形;
(2)当AC⊥BD时,四边形EFGH为矩形,理由如下
连接AC,
∵E、F为BA和BC的中点
∴EF为△BAC的中位线
∴EF∥AC
∵AC⊥BD
∴EF⊥BD
∵EH∥BD
∴EF⊥EH
∴∠FEH=90°
∵四边形EFGH为平行四边形
∴四边形EFGH为矩形
故答案为:AC⊥BD.
此题考查的是中位线的性质、平行四边形的判定和矩形的判定,掌握中位线的性质、平行四边形的判定定理和矩形的定义是解决此题的关键.
16、﹣1≤x<1
【解析】
试题分析:先求出每个不等式的解集,再求出其公共部分即可.
试题解析:
由①得1x﹣7<3﹣3x,
化简得5x<10,
解得:x<1.
由②得4x+9≥3﹣1x,
化简得6x≥﹣6,
解得:x≥﹣1,
∴原不等式组的解集为﹣1≤x<1.
在数轴上表示出来为:
点睛:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
17、当时,分式的值比分式的值大2.
【解析】
根据题意列出方程,求出方程的解即可得到x的值.
【详解】
解:根据题意得:
方程两边同乘以约去分母,得:
化简整理,得:
解得
经检验:是原方程的根,
所以,原方程的根是:
所以,当时,分式的值比分式的值大2.
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
18、(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm,游客行走更舒服.
【解析】
分析:(1)根据图中所给的数据,利用平均数公式求解即可;
(2)根据平均数、中位数、方差和极差的特征回答即可;
(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.
详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,
乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.
(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.
(3)每个台阶高度均为15cm(原平均数)使得方差为0,游客行走更舒服.
点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=﹣2x﹣1
【解析】
因为平行,所以得到两个函数的k值相同,再根据截距是-1,可得b=-1,即可求解.
【详解】
∵直线l与直线y=3﹣2x平行,
∴设直线l的解析式为:y=﹣2x+b,
∵在y轴上的截距是﹣1,
∴b=﹣1,
∴y=﹣2x﹣1,
∴直线l的表达式为:y=﹣2x﹣1.
故答案为:y=﹣2x﹣1.
该题主要考查了一次函数图像平移的问题,
20、
【解析】
由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=.
【详解】
解:连接FD
∵正方形ABCD的边长为4,
∴AB=BC=4,∠B=90°,
∴AC=,
当P与D重合时,PC=ED=PA,即G与A重合,
∴EG的中点为D,即F与D重合,
当点P从D点运动到A点时,则点F运动的轨迹为DF,
∵D是AE的中点,F是EG的中点,
∴DF是△EAG的中位线,
∴DF∥AG,
∵∠CAG=90°,∠CAB=45°,
∴∠BAG=45°,
∴∠EAG=135°,
∴∠EDF=135°,
∴∠FDA=45°,
∴F为正方形ABCD的对角线的交点,CF⊥DF,
此时CF最小,
此时CF=AG=;
故答案为:.
本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.
21、1
【解析】
利用平方差公式即可计算.
【详解】
原式.
故答案为:1.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
22、2
【解析】
根据题意可得:阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则2019个这样的正方形重叠部分即为(2019﹣1)个阴影部分的和,问题得解.
【详解】
由题意可得阴影部分面积等于正方形面积的,则一个阴影部分面积为:1.
n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)×4=(n﹣1).
所以这个2019个正方形重叠部分的面积和=×(2019﹣1)×4=2,
故答案为:2.
本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.
23、2
【解析】
因为点A,B的横坐标相同,线段AB的中点恰好在x轴上,故点A,B关于x轴对称,纵坐标互为相反数,由此可得m的值.
【详解】
解:点A,B的横坐标相同,线段AB的中点恰好在x轴上
点A,B关于x轴对称,纵坐标互为相反数
点A的纵坐标为-2
故答案为:2
本题考查了平面直角坐标系中点的对称问题,正确理解题意是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,即可证得四边形CEDF是平行四边形.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵DE=AD,F是BC边的中点,
∴FC=BC=AD=DE,
又∵DE∥FC,
∴四边形CEDF是平行四边形.
本题主要考查了平行四边形的判定与性质,熟练应用平行四边形的判定方法是解题关键.
25、 (1);(2);(3)见解析.
【解析】
(1)设w1=kx,将(10,40000)代入即可得到k的值;
(2)根据盈利=运营收入-运营支出-先期成本得出关系式;
(3)分三种情况分析讨论.
【详解】
(1) 设w1=kx,将(10,40000)代入可得:
40000=10k,解得k=4000,
所以;
(2)∵,
∴
,
(3)若,则,解得;
若,则,解得;
若,则,解得,
∴当时,一辆型汽车盈利高;
当时,一辆型和一辆型车,盈利一样高;
当时,一辆型汽车盈利高;
考查了一次函数的应用和一元一次不等式的应用,解题关键是理解题意得出数量关系,第(3)问要分情况进行讨论.
26、 (1) y甲=0.8x;y乙=;(2)见解析
【解析】
(1)结合图象,利用待定系数法即可求出y甲,y乙关于x的函数关系式即可;(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论求解即可.
【详解】
(1)设y甲=kx,把(2000,1600)代入,
得2000k=1600,解得k=0.8,
所以y甲=0.8x;
当0<x<2000时,设y乙=ax,
把(2000,2000)代入,得2000a=2000,解得a=1,
所以y乙=x;
当x≥2000时,设y乙=mx+n,
把(2000,2000),(4000,3400)代入,得
,
解得,
.
所以y乙=;
(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;
当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;
若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;
若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;
故当购买金额按原价小于6000元时,到甲商店购买更省钱;
当购买金额按原价大于6000元时,到乙商店购买更省钱;
当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.
本题考查了一次函数的实际应用,正确求得付款金额y甲,y乙与原价x之间的函数关系式是解决问题的关键.
题号
一
二
三
四
五
总分
得分
每台甲型收割机的租金
每台乙型收割机的租金
A地区
1800
1600
B地区
1600
1200
相关试卷
这是一份2023-2024学年山东省青岛市集团校联考数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了下列四个数中是负数的是,已知抛物线的顶点坐标为,若两个相似三角形的面积之比为1等内容,欢迎下载使用。
这是一份山东省青岛市集团校联考2023-2024学年八上数学期末达标检测试题含答案,共7页。试卷主要包含了若三边长,,,满足,则是,计算-3+4的结果是,点P象限等内容,欢迎下载使用。
这是一份山东省青岛市集团校联考2022-2023学年数学七下期末统考试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,用反证法证明,某商务酒店客房有间供客户居住,已知正比例函数y=kx等内容,欢迎下载使用。