山东省望留镇庄头中学2024年数学九年级第一学期开学联考试题【含答案】
展开
这是一份山东省望留镇庄头中学2024年数学九年级第一学期开学联考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知正方形ABCD的面积等于25,直线a,b,c分别过A,B,C三点,且a∥b∥c,EF⊥直线c,垂足为点F交直线a于点E,若直线a,b之间的距离为3,则EF=( )
A.1B.2C.-3D.5-
2、(4分)定义新运算:a⊙b=,则函数y=3⊙x的图象可能是( )
A.B.
C.D.
3、(4分)已知平行四边形ABCD中,∠B=4 ∠A,则∠C= ( )
A.18°B.72°C.36°D.144°
4、(4分)如果5x=6y,那么下列结论正确的是( )
A.B.C.D.
5、(4分)x≥3是下列哪个二次根式有意义的条件( )
A.B.C.D.
6、(4分)已知一元二次方程2﹣5x+1=0的两个根为,,下列结论正确的是( )
A.+=﹣B.•=1
C.,都是正数D.,都是有理数
7、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,AC=12,菱形ABCD的面积为96,则OH的长等于( )
A.6B.5C.4D.3
8、(4分)用配方法解方程x2﹣6x+3=0,下列变形正确的是( )
A.(x﹣3)2=6B.(x﹣3)2=3C.(x﹣3)2=0D.(x﹣3)2=1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在市业余歌手大奖赛的决赛中,参加比赛的名选手成绩统计如图所示,则这名选手成绩的中位数是__________.
10、(4分)如图,为的中位线,点在上,且为直角,若 ,,则的长为_____.
11、(4分)现有两根长6分米和3分米的木条,小华想再找一根木条为老师制作一个直角三角形教具,则第三根木条的长度应该为___分米.
12、(4分)如图,在矩形中,,点,分别在,上,将沿折叠,使点落在上的点处,又将沿折叠,使点落在直线与的交点处;___________.
13、(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为_______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.
(1)第一批杨梅每件进价多少元?
(2)老板以每件150元的价格销售第二批杨梅,售出后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润售价进价)?
15、(8分)如图,在中,分别是的平分线.
求证:四边形是平行四边形.
16、(8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉子听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉子得1分,本次决赛,学生成绩为x(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有________名学生参加;
(2)直接写出表中:a= ,b= 。
(3)请补全右面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.
17、(10分)如图,在中,,点D,E分别是边AB,AC的中点,连接DE,DC,过点A作交DE的延长线于点F,连接CF.
(1)求证:;
(2)求证,四边形BCFD是平行四边形;
(3)若,,求四边形ADCF的面积.
18、(10分)如图,四边形 ABCD 是矩形,把矩形沿直线 BD 拆叠,点 C 落在点 E 处,连接 DE, DE 与 AD 交于点 M.
(1)证明四边形 ABDE 是等腰梯形;
(2)写出等腰梯形 ABDE 与矩形 ABCD 的面积大小关系,并证明你的结论.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形中,,,,则______.
20、(4分)如图,在菱形ABCD中,∠A=70º,E,F分别是边AB和BC的中点,EP⊥CD于P,则∠FPC的度数为___________.
21、(4分)一元二次方程 的一次项系数为_________.
22、(4分)若方程的两根互为相反数,则________.
23、(4分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:
由上表可知,甲、乙两组成绩更稳定的是________组.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:
请结合题意填空,完成本题解答:
(1)解不等式①,得______;
(2)解不等式②,得______;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为______.
25、(10分)解一元二次方程
(1)2x+x-3=0 (2)
26、(12分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且.连接AE、AF,M是AF的中点,作射线DM交AE于点N.
(1)如图1,若点E,F分别在BC,CD边上.
求证:①;
②;
(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
延长AE交BC于N点,过B点作BM⊥AN于M点,过N点作NH⊥FC于H点,在Rt△ABM和Rt△BMN中,易得cs∠BAM=cs∠MBN,即,解得BN=,从而求出CN长度,在Rt△HNC中,利用cs∠HNC=cs∠MBN=,求出NH长度,最后借助EF=NH即可.
【详解】
解:延长AE交BC于N点,过B点作BM⊥AN于M点,过N点作NH⊥FC于H点,
因为正方形的面积为23,所以正方形的边长为3.
在Rt△ABM中,AB=3,BM=3,利用勾股定理可得AM=2.
∵∠BAM+∠ABM=90°,∠NBM+∠ABM=90°,
∴∠MBN=∠BAM.
∴cs∠BAM=cs∠MBN,即 ,解得BN=.
∴CN=BC-BN=.
∵∠HNC=∠MBN,
∴cs∠HNC=cs∠MBN=.
∴ ,解得NH=3.
∵a∥c,EF⊥FC,NH⊥FC,
∴EF=NH=3.
故选:A.
本题考查正方形的性质、平行线间的距离、解直角三角形,解题的关键是根据题意作出辅助线,转化角和边.
2、C
【解析】
根据题意可得y=3⊕x= ,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.
【详解】
由题意得y=3⊕x=,
当x≥3时,y=2;当x<3且x≠0时,y=﹣,
图象如图:
故选:C.
此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
3、C
【解析】
解:∵四边形ABCD是平行四边形,
∴∠A+∠B=180°,∠A=∠C,
又∵∠B=4∠A,
∴5∠A=180°,解得∠A=36°,
∴∠C=36°.
故选C.
4、A
【解析】
试题解析:A, 可以得出:
故选A.
5、D
【解析】
根据二次根式有意义的条件逐项求解即可得答案.
【详解】
A、x+3≥1,解得:x≥-3,故此选项错误;
B、x-3>1,解得:x>3,故此选项错误;
C、x+3>1,解得:x>-3,故此选项错误;
D、x-3≥1,解得:x≥3,故此选项正确,
故选D.
本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于1.
6、C
【解析】
先利用根与系数的关系得到x1+x21,x1x21,然后利用有理数的性质可判定两根的符号.
【详解】
根据题意得x1+x21,x1x21,
所以x1>1,x2>1.
∵x,故C选项正确.
故选C.
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根,则x1+x2,x1x2.
7、B
【解析】
由菱形的面积和对角线AC的长度可求出BD的长,再由勾股定理可求出AD的长,因为菱形的对角线互相垂直得出∠AOD=90°,然后根据直角三角形斜边上的中线性质即可得出结果.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∵菱形ABCD的面积为96,
∴AC•BD=96,
∴BD=16,
∴AD==10,
∵∠AOD=90°,H为AD边中点,
∴OH=AD=1.
故选B.
本题考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解决问题的关键.
8、A
【解析】
把常数项3移到等号的右边,再在等式的两边同时加上一次项系数﹣6的一半的平方,配成完全平方的形式,从而得出答案.
【详解】
解:∵x2﹣6x+3=0,
∴x2﹣6x=﹣3,
∴x2﹣6x+9=6,即(x﹣3)2=6,
故选:A.
本题考查了一元二次方程的解法---配方法,熟练掌握配方的步骤是解题的关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8.5
【解析】
根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.
【详解】
根据图形,这个学生的分数为:,,,,,,,,,,则中位数为.
本题考查求中位数,解题的关键是掌握求中位数的方法.
10、1cm.
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=4(cm),
∵∠AFC为直角,E为AC的中点,
∴FE=AC=3(cm),
∴DF=DE﹣FE=1(cm),
故答案为1cm.
本题考查的是三角形中位线定理,直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
11、或3
【解析】
根据勾股定理解答即可.
【详解】
解:第三根木条的长度应该为或分米;
故答案为或3..
此题考查勾股定理,关键是根据勾股定理解答.
12、3
【解析】
首先连接,可以得到连接是∠的平分线,所以,又,所以是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.
【详解】
解:如下图所示,连接
∵将沿折叠,使点落在上的点处,又将沿折叠,使点落在直线与的交点处
∴,∠1=∠2
∵∠2=∠3
∴∠1=∠3
在△和△中
∴△△
∴
又∵
∴
∴为对角线AC的中点
即AC=2AB=18
∴∠ACB=30°
则∠BAC=60°,∠=∠=30°
∴∠=∠1=60°
∴∠=∠=30°
∴
∵DF+CF=CD=AB=9
∴DF=
故答案为3.
本题考查了折叠问题和矩形的性质,注意折叠前面的两个图形是两个全等形.
13、4
【解析】
首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.
【详解】
解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,
∵AB∥CD,AD∥BC,
∴四边形ABCD为平行四边形,
∴∠ADF=∠ABE,
∵两纸条宽度相同,
∴AF=AE,
∵
∴△ADF≌△ABE,
∴AD=AB,
∴四边形ABCD为菱形,
∴AC与BD相互垂直平分,
∴BD=
故本题答案为:4
本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
三、解答题(本大题共5个小题,共48分)
14、(1)120元(2)至少打7折.
【解析】
(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;
(2)设剩余的杨梅每件售价y元,由利润=售价-进价,根据第二批的销售利润不低于320元,可列不等式求解.
【详解】
解:(1)设第一批杨梅每件进价是x元,
则
解得
经检验,x=120是原方程的解且符合题意.
答:第一批杨梅每件进价为120元.
(2)设剩余的杨梅每件售价打y折.
则
解得y≥7.
答:剩余的杨梅每件售价至少打7折.
考查分式方程的应用, 一元一次不等式的应用,读懂题目,从题目中找出等量关系以及不等关系是解题的关键.
15、详见解析.
【解析】
由四边形ABCD是平行四边形可得,CE∥AF,∠DAB=∠DCB,又AE、CF分别平分∠DAB、∠BCD,所以∠2=∠3,可证四边形AFCE是平行四边形.
【详解】
∵四边形ABCD是平行四边形,
∴CE∥AF,∠DAB=∠DCB,
∵AE、CF分别平分∠DAB、∠BCD,
∴∠2=∠3,
又∠3=∠CFB,
∴∠2=∠CFB,
∴AE∥CF,
又CE∥AF,
∴四边形AFCE是平行四边形.
16、(1)50;(2)20,0.24;(3)详见解析;(4)52%.
【解析】
(1)根据表格中的数据可以求得本次决赛的学生数;
(2)根据(1)中决赛学生数,可以求得a、b的值;
(3)根据(2)中a的值,可以将频数分布直方图补充完整;
(4)根据表格中的数据可以求得本次大赛的优秀率.
【详解】
解:(1)由表格可得,
本次决赛的学生数为:10÷0.2=50,
故答案为:50;
(2)a=50×0.4=20,b=12÷50=0.24,
故答案为:20,0.24;
(3)补全的频数分布直方图如右图所示,
(4)由表格可得,
决赛成绩不低于80分为优秀率为:(0.4+0.12)×100%=52%,
故答案为:52%.
本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.
17、(1),见解析;(2)四边形BCFD是平行四边形,见解析;(3).
【解析】
(1)欲证明DE=EF,只要证明△AEF≌△CED即可;
(2)只要证明BC=DF,BC∥DF即可;
(3)只要证明AC⊥DF,求出DF、AC即可;
【详解】
(1)证明:∵,∴,
∵,,
∴,
∴.
(2)∵,,∴,,
∵,∴,
∴四边形BCFD是平行四边形.
(3)在中,,,
∴,,,
∴,
∵DE∥BC,∴,
∴,
∴.
本题考查平行四边形的判定和性质、三角形的中位线定理.解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、(1)答案见解析;(2)等腰梯形ABDE小于矩形ABCD的面积
【解析】
(1)结合图形证△AMB≌△EMD,再结合图形的折叠关系可得答案.
(2) 由AE
相关试卷
这是一份2023-2024学年山东省潍坊市潍城区望留镇庄头中学数学九上期末统考试题含答案,共8页。试卷主要包含了答题时请按要求用笔,有一则笑话等内容,欢迎下载使用。
这是一份山东省望留镇庄头中学2023-2024学年数学九年级第一学期期末考试模拟试题含答案,共7页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省望留镇庄头中学八上数学期末综合测试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,若分式的值为零,那么x的值为,如图,已知一次函数的图象经过A等内容,欢迎下载使用。