山东省威海市荣成十四中学2025届九上数学开学统考模拟试题【含答案】
展开这是一份山东省威海市荣成十四中学2025届九上数学开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法:(1) 的立方根是2,(2)的立方根是±5,(3)负数没有平方根,(4)一个数的平方根有两个,它们互为相反数.其中错误的有( )
A.4个B.3个C.2个D.1个
2、(4分)不等式2x﹣1<1的解集在数轴上表示正确的是( )
A.B.
C.D.
3、(4分)使用同一种规格的下列地砖,不能进行平面镶嵌的是( )
A.正三角形地砖 B.正四边形地砖 C.正五边形地砖 D.正六边形地砖
4、(4分)解分式方程,去分母得( )
A.B.C.D.
5、(4分)以下图形中,既是中心对称图形,又是轴对称图形的是( )
A.三角形B.菱形C.等腰梯形D.平行四边形
6、(4分)已知直线y=2x-b经过点(1,-1),则b的值为( )
A.3B.-3C.0D.6
7、(4分)如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为( )
A.(12,12)B.(78,78)C.(66,66)D.(55,55)
8、(4分)如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是( )
A.32°B.35°C.36°D.40°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,垂直平分线段于点的平分线交于点,连结,则∠AEC的度数是 .
10、(4分)当x分别取值,,,,,1,2,,2007,2008,2009时,计算代数式的值,将所得的结果相加,其和等于______.
11、(4分)将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是_____.
12、(4分)在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.
13、(4分)化简:___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,过矩形的顶点作,交的延长线于点
求证:
若°,求的周长.
15、(8分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).
(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;
(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
16、(8分)与位似,且,画出位似中心,并写出与的位似比.
17、(10分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.
(1)求E点坐标;
(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.
18、(10分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在▱ABCD中,AB=10,BC=6,AC⊥BC,则▱ABCD的面积为_____.
20、(4分)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=10,等腰直角三角形ADE绕着点A旋转,∠DAE=90°,AD=AE=6,连接BD、CD、CE,点M、P、N分别为DE、DC、BC的中点,连接MP、PN、MN,则△PMN的面积最大值为_____.
21、(4分)现有甲、乙两支篮球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是_______队.
22、(4分)化简______.
23、(4分)如果a是一元二次方程的一个根,那么代数式=__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,是的中线,点是线段上一点(不与点重合).过点作,交于点,过点作,交的延长线于点,连接、.
(1)求证:;
(2)求证:;
(3)判断线段、的关系,并说明理由.
25、(10分)如图,AD是△ABC边BC上的高,用尺规在线段AD上找一点E,使E到AB的距离等于ED(不写作法,保留作图痕迹)
26、(12分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
(1)求点A的坐标;
(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
①根据立方根的性质即可判定;
②根据立方根的性质即可判定;
③根据平方根的定义即可判定;
④根据平方根的定义即可判定
【详解】
(1)的立方根是2,2的立方根是 ,故①错误;
(2)=-5,-5的立方根是- ,故②错误;
(3)负数没有平方根,原来的说法正确;
(4)一个正数的平方根有两个,它们互为相反数,故④错误.
错误的有3个.
故选:B.
此题考查立方根的性质,平方根的定义,解题关键在于掌握其性质
2、C
【解析】
不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.
【详解】
解:不等式移项合并得:2x<2,
解得:x<1,
表示在数轴上,如图所示:
故选C.
此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.
3、C
【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;
B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;
D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.
故选C.
4、A
【解析】
分式方程两边乘以(x-1)去分母即可得到结果.
【详解】
解:方程两边乘以(x-1)
去分母得:.
故选:A.
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
5、B
【解析】
关于某条直线对称的图形叫轴对称图形.绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.
【详解】
解:A、三角形既不是中心对称图形,也不是轴对称图形;
B、菱形既是中心对称图形,也是轴对称图形;
C、等腰梯形是轴对称图形;
D、平行四边形是中心对称图形.
故选B.
掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、A
【解析】
将点(1,-1)代入y=2x-b,即可求解.
【详解】
解:将点(1,-1)代入y=2x-b得:
-1=2-b,解得:b=3,
故选:A.
本题考查的是一次函数点的坐标特征,将点的坐标代入函数表达式即可求解.
7、B
【解析】
根据选点的规律,罗列出部分点的坐标,根据这些点的坐标找出规律“An(-, ),Bn(,)(n为正整数)”,再根据该规律解决问题.
【详解】
解:观察,发现规律:A1(-1,1),B1(1,1),A2(-3,3),B2(3,3),A3(-6,6),B3(6,6),B4(10,10),A5(-15,15),…,∴An(-, ),Bn(,)(n为正整数).∴B12(,),即(78,78).
故选B
本题考查了规律型中的点的坐标,解题的关键是找出规律“An(-, ),Bn(,)(n为正整数)”.本题属于中档题,难度不大,解决该题型题目时,根据选点的规律列出部分点的坐标,根据这些点的坐标发现规律是关键.
8、C
【解析】
设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.
【详解】
设∠BAC=x,由旋转的性质,可得
∠DAE=∠BAC=x,
∴∠DAC=∠DBA=2x,
又∵AB=AD,
∴∠ADB=∠ABD=2x,
又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,
∴x+2x+2x=180°,
∴x=36°,
即∠BAC=36°,
故选C.
本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、115°
【解析】
试题分析:根据垂直平分线的性质可得BE=CE,即可得到∠EBC=∠ECB=25°,再根据三角形外角的性质即可求得∠AEC=∠EDC+∠ECB=115°.
考点:角平分线的性质,垂直平分线的性质,三角形外角的性质
10、1
【解析】
先把和代入代数式,并对代数式化简,得到它们的和为1,然后把代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.
【详解】
因为,
即当x分别取值,为正整数时,计算所得的代数式的值之和为1;
而当时,.
因此,当x分别取值,,,,,1,2,,2117,2118,2119时,
计算所得各代数式的值之和为1.
故答案为:1.
本题考查的是代数式的求值,本题的x的取值较多,并且除外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为1,这样计算起来就很方便.
11、y=-2x+1
【解析】
根据一次函数图象平移的规律即可得出结论.
【详解】
解:正比例函数y=-2x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-2x+1,
故答案为y=-2x+1.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
12、2
【解析】
根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.
【详解】
作点E′和E关于BD对称.则连接AE′交BD于点P,
∵四边形ABCD是菱形,AB=4,E为AD中点,
∴点E′是CD的中点,
∴DE′=DC=×4=2,AE′⊥DC,
∴AE′=.
故答案为2.
此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.
13、
【解析】
被开方数因式分解后将能开方的数开方即可化简二次根式.
【详解】
,
故答案为:.
此题考查二次根式的化简,正确掌握最简二次根式的特点并正确将被开方数因式分解是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)
【解析】
(1)根据矩形的性质可证明四边形为平行四边形,继而得出,即可证明结论;
(2)根据直角三角形的性质计算得出AB、AC的值,即可得出的周长.
【详解】
解:证明:四边形为矩形.
四边形为平行四边形
由得
又,
,
.
本题考查的知识点是矩形的性质、平行四边形的判定及性质、勾股定理、等腰三角形的性质,解此题的关键是灵活运用矩形的性质、平行四边形的性质.
15、(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC的面积为10.
【解析】
【分析】(1) A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC边长为5,BC边上的高为4,再计算面积.
【详解】解:(1)直角坐标系如图所示.
图书馆的坐标为B(-2,-2).
(2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为×5×4=10.
【点睛】本题考核知识点:平面直角坐标系. 解题关键点:理解坐标的意义,利用坐标求出线段长度.
16、作图见详解,位似比为1:1
【解析】
连接BB′、CC′,它们的交点P为位似中心,根据位似的性质相似比等于位似比,所以计算AB与A′B′的值即可得到△ABC与△A′B′C′的位似比.
【详解】
解:如图,点P为位似中心.
∵AB=1,A′B′=1,
∴△ABC与△A′B′C′的位似比=AB:A′B′=1:1.
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心. 注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行或共线.
17、(1)点E的坐标为(1,2);(2)点 P的坐标为(-1,6)或(5,-6).
【解析】
(1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.
【详解】
(1)由题意得,,
解得,,
∴点E的坐标为(1,2);
(2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,
∴A(-1,0),D(2,0),
∴AD=3,
∵△ADP的面积为9,
∴△ADP边AD上的高为6,
∴点P的纵坐标为6,
当点P在y轴的上方时,-2x+4=6,
解得x=-1,
∴P(-1,6);
当点P在y轴的下方时,-2x+4=-6,
解得x=5,
∴P(5,-6);
综上,当△ADP的面积为9时,点 P的坐标为(-1,6)或(5,-6).
本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.
18、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.
【解析】
试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;
(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;
(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;
(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.
试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;
(2)仍成立.
证明:如图2,连接AC、BD.
由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;
(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.
在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.
又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;
(4)O在移动过程中可形成直线AC.
考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底高,可求面积。
【详解】
在Rt△ABC中,AB=10,BC=6,
利用勾股定理可得AC=2.
根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.
故答案为1.
本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。
20、31
【解析】
由题意可证△ADB≌△EAC,可得BD=CE,∠ABD=∠ACE,由三角形中位线定理可证△MPN是等腰直角三角形,则S△PMN=PN1=BD1.可得BD最大时,△PMN的面积最大,由等腰直角三角形ADE绕着点A旋转,可得D是以A为圆心,AD=6为半径的圆上一点,可求BD最大值,即可求△PMN的面积最大值.
【详解】
∵△ABC,△ADE是等腰直角三角形,
∴AD=AE,AB=AC,∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠BAD=∠CAE且AB=AC,AD=AE,
∴△ADB≌△AEC,
∴DB=EC,∠ABD=∠ACE.
∵M,N,P分别是DE,DC,BC的中点,
∴MP∥EC,MP=EC,NP=DB,NP∥BD,
∴MP=NP,∠DPM=∠DCE,∠PNC=∠DBC.
设∠ACE=x°,∠ACD=y°,
∴∠ABD=x°,∠DBC=45°﹣x°=∠PNC,∠DCB=45°﹣y°,
∴∠DPM=x°+y°,∠DPN=∠DCB+∠PNC=∠DCB+∠DBC=45°﹣y°+45°﹣x°=90°﹣x°﹣y°,
∴∠MPN=90°且PN=PM,
∴△PMN是等腰直角三角形,∴S△PMN=PN1=BD1,∴当BD最大时,△PMN的面积最大.
∵D是以A点为圆心,AD=6为半径的圆上一点,
∴A,B,D共线且D在BA的延长线时,BD最大.
此时BD=AB+AD=16,
∴△PMN的面积最大值为31.
故答案为31.
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解题的关键是灵活运用所学知识解决问题.
21、甲
【解析】
根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小). 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
【详解】
∵<,
∴身高较整齐的球队是甲队。
故答案为:甲.
此题考查极差、方差与标准差,解题关键在于掌握其性质.
22、.
【解析】
约去分子与分母的公因式即可.
【详解】
.
故答案为:.
本题主要考查了分式的约分,主要是约去分式的分子与分母的公因式.
23、1
【解析】
根据一元二次方程的解的定义得到a2-1a=5,再把8-a2+1a变形为8-(a2-1a),然后利用整体代入的方法计算即可.
【详解】
解:把x=a代入x2-1x-5=0得a2-1a-5=0,
所以a2-1a=5,
所以8-a2+1a=8-(a2-1a)=8-5=1.
故答案为:1.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)证明见解析;(3)BD//AE,BD=AE.
【解析】
(1)根据平行线的性质得到∠ABC=∠EKC,∠AMB=∠ECK,得到△ABM∽△EKC;
(2)根据相似三角形的性质得到比例式,计算即可;
(3)根据相似三角形的性质得到DE=AB,得到四边形ABDE是平行四边形,根据平行是四边形的性质解答.
【详解】
(1)证明:∵,
∴,
∵,
∴,
∴;
(2)证明:∵,
∴,
∴,
∵是的中线,
∴,
∴;
(3)解:,,
∵,
∴,
∵,
∴,
∵,
∴四边形是平行四边形,
∴,.
本题考查的是相似三角形的判定和性质、平行四边形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.
25、见解析.
【解析】
利用基本作图,作∠ABD的平分线交AD于E,则E到AB的距离等于ED.
【详解】
如图,点E为所作.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
26、(1)A(4,3);(2)28.
【解析】
(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.
【详解】
解:(1)由题意得: ,解得,
∴点A的坐标为(4,3).
(2)过点A作x轴的垂线,垂足为D,
在Rt△OAD中,由勾股定理得,
∴.
∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,
∴,解得a=8.
∴.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届山东省邹平县实验中学九上数学开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省荣成市第三十五中学数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省威海市荣成第十四中学九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。