![山东省潍坊市安丘市2025届数学九上开学预测试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16288250/0-1729812156517/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省潍坊市安丘市2025届数学九上开学预测试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16288250/0-1729812156571/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省潍坊市安丘市2025届数学九上开学预测试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16288250/0-1729812156589/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省潍坊市安丘市2025届数学九上开学预测试题【含答案】
展开这是一份山东省潍坊市安丘市2025届数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一次函数与的图象交点的横坐标为3,则下列结论:
①;②;③当时,中,正确结论的个数是 ( )
A.0B.3C.2D.1
2、(4分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为( )
A.10B.12C.16D.11
3、(4分)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是( )
ABCD
4、(4分)下列命题的逆命题是真命题的是( )
A.对顶角相等B.全等三角形的面积相等
C.两直线平行,内错角相等D.等边三角形是等腰三角形
5、(4分)直线y=2x﹣6与x轴的交点坐标是( )
A.(0,3)B.(3,0)C.(0,﹣6)D.(﹣3,0)
6、(4分)在,,,高,则BC的长是( )
A.14B.4C.4或14D.7或13
7、(4分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是( )
A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3
8、(4分)下列x的值中,是不等式x+1>5的解的是( )
A.﹣2B.0C.4D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,正方形、、,…,按图所示的方式放置.点、、,…和点、、,…分别在直线和轴上.已知,,则点的坐标是______.
10、(4分)若,则m-n的值为_____.
11、(4分)将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.
12、(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.
13、(4分)若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:
求:(Ⅰ)m=_____,n=_____;
(Ⅱ)求学生捐款数目的众数、中位数和平均数;
(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?
15、(8分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=1,O为AC的中点,OE⊥OD交AB于点E.若AE=,则DO的长为_____________.
16、(8分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.
17、(10分)将矩形纸片按图①所示的方式折叠,得到菱形(如图②),若,求的长.
18、(10分)如图,已知点A的坐标为(a,4)(其中a<-3),射线OA与反比例函数的图象交于点P,点B,C分别在函数的图象上,且AB∥x轴,AC∥y轴,连结BO,CO,BP,CP.
(1)当a=-6,求线段AC的长;
(2)当AB=BO时,求点A的坐标;
(3)求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.
20、(4分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
21、(4分)若式子 有意义,则x的取值范围为___________.
22、(4分)一元二次方程有实数根,则的取值范围为____.
23、(4分)某小区20户家庭的日用电量(单位:千瓦时)统计如下:
这20户家庭日用电量的众数、中位数分别是( )
A.6,6.5B.6,7C.6,7.5D.7,7.5
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在□ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,过点F作FG⊥BF交BC的延长线于点G.
(1)求证:四边形ABEF是菱形;
(2)如果AB= 2,∠BAD=60°,求FG的长.
25、(10分)已知,AC是□ABCD的对角线,BM⊥AC,DN⊥AC,垂足分别是M、N.
求证:四边形BMDN是平行四边形.
26、(12分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
①由一次函数y1=kx+b的图象过第一、二、四象限,即可得出k<0,由此即可得出①正确;②由一次函数y2=x+a的图象过第一、三、四象限,即可得出a<0,由此得出②错误;③根据两一次函数图象的上下位置关系即可得出当x<3时,y1>y2,即③正确.综上即可得出结论.
【详解】
①∵一次函数y1=kx+b的图象过第一、二、四象限,
∴k<0,①正确;
②∵一次函数y2=x+a的图象过第一、三、四象限,
∴a<0,②错误;
③观察函数图象,发现:
当x<3时,一次函数y1=kx+b的图象在一次函数y2=x+a的图象的上方,
∴当x<3时,y1>y2,③正确.
综上可知:正确的结论为①③.
故选:C.
考查了一次函数与一元一次不等式,解题的关键是逐条分析三个选项是否正确.本题属于基础题,难度不大,解决该题型题目时,熟悉一次函数图象与一次函数系数的关系是关键.
2、C
【解析】
首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.
【详解】
作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN
∴S矩形EBNP= S矩形MPFD ,
又∵S△PBE= S矩形EBNP,S△PFD=S矩形MPFD,
∴S△DFP=S△PBE=×2×1=1,
∴S阴=1+1=16,
故选C.
本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.
3、C
【解析】
试题分析:由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.
解:因为开始以正常速度匀速行驶,所以s随着t的增加而增加,随后由于故障修车,此时s不发生改变,再之后加快速度匀驶,s随着t的增加而增加,综上可得S先缓慢增加,再不变,再加速增加.
故选:C.
考点:函数的图象.
4、C
【解析】
先分别写出各命题的逆命题,再根据对顶角的概念,全等三角形的判定,平行线的判定以及等腰三角形和等边三角形的关系分别判断即可得解.
【详解】
A、逆命题为:相等的两个角是对顶角,是假命题,故本选项错误;
B、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项错误;
C、逆命题为:内错角相等,两直线平行,是真命题,故本选项正确;
D、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误.
故选C.
本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5、B
【解析】
把y=0代入y=2x﹣6即可求得直线 与 轴的交点坐标.
【详解】
当y=0时,2x-6=0,解得:x=3,
所以,与x轴的交点坐标是(3,0),选B。
此题考查一次函数图象上点的坐标特征,解题关键在于把y=0代入解析式
6、C
【解析】
分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD−BD.
【详解】
解:(1)如图
锐角△ABC中,AB=15,AC=13,BC边上高AD=12,
在Rt△ABD中AB=15,AD=12,由勾股定理得:
BD2=AB2−AD2=152−122=81,
∴BD=9,
在Rt△ACD中AC=13,AD=12,由勾股定理得
CD2=AC2−AD2=132−122=25,
∴CD=5,
∴BC的长为BD+DC=9+5=11;
(2)如图
钝角△ABC中,AB=15,AC=13,BC边上高AD=12,
在Rt△ABD中AB=15,AD=12,由勾股定理得:
BD2=AB2−AD2=152−122=81,
∴BD=9,
在Rt△ACD中AC=13,AD=12,由勾股定理得:
CD2=AC2−AD2=132−122=25,
∴CD=5,
∴BC的长为DC−BD=9−5=1.
故BC长为11或1.
故选:C.
本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
7、B
【解析】
找出方程的二次项系数,一次项系数,以及常数项即可.
【详解】
方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,
故选:B.
此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).解题关键在于找出系数及常熟项
8、D
【解析】
根据不等式解集的定义即可得出结论.
【详解】
∵不等式x+1>5的解集是所有大于4的数,
∴6是不等式的解.
故选D.
本题考查的是不等式的解集,熟知使不等式成立的未知数的值叫做不等式的解是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由正方形的轴对称性,由C1、C2的坐标可求A1、A2的坐标,将A1、A2的坐标代入y=kx+b中,得到关于k与b的方程组,求出方程组的解得到k与b的值,从而求直线解析式,由正方形的性质求出OB1,OB2的长,设B2G=A3G=t,表示出A3的坐标,代入直线方程中列出关于b的方程,求出方程的解得到b的值,确定出A3的坐标.
【详解】
连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,
∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,
∵C1(1,-1),C2(,−),
∴A1(1,1),A2(,),
∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,
将A1与A2的坐标代入y=kx+b中得: ,
解得: ,
∴直线解析式为y=x+,
设B2G=A3G=t,则有A3坐标为(5+t,t),
代入直线解析式得:t=(5+t)+,
解得:t=,
∴A3坐标为.
故答案是:.
考查了一次函数的性质,正方形的性质,利用待定系数法求一次函数解析式,是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用正方形的性质是解本题的关键.
10、4
【解析】
根据二次根式与平方的非负性即可求解.
【详解】
依题意得m-3=0,n+1=0,解得m=3,n=-1,
∴m-n=4
此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.
11、y=-x+1.
【解析】
根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.
【详解】
解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,
∵经过点(2,1),
∴1=2a+1,解得:a=-1,
∴平移后的直线的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.
12、k>﹣1且k≠1.
【解析】
由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.
【详解】
解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,
∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,
∴k>﹣1,
∵x的一元二次方程kx2﹣2x﹣1=1
∴k≠1,
∴k的取值范围是:k>﹣1且k≠1.
故答案为:k>﹣1且k≠1.
此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:
(1)△>1⇔方程有两个不相等的实数根;
(2)△=1⇔方程有两个相等的实数根;
(3)△<1⇔方程没有实数根.
13、4.5
【解析】
根据题意可以求得x的值,从而可以求的这组数据的中位数.
【详解】
解:∵数据1、3、x、5、4、6的平均数是4,
∴
解得:x=5,
则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6
则中位数为
故答案为:4.5
本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
三、解答题(本大题共5个小题,共48分)
14、40 30
【解析】
分析:(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出的数值即可;
(Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可;
(Ⅲ)利用求得的平均数乘总人数得出答案即可.
详解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人.
12÷30=40%,9÷30=30%,
所以扇形统计图中的
故答案为40,30;
(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多,
∴学生捐款数目的众数是50元;
∵按照从小到大排列,处于中间位置的两个数据都是50,
∴中位数为50元;
这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元).
(Ⅲ)根据题意得:
2500×81=202500元
答:估计该校学生共捐款202500元.
点睛: 本题考查扇形统计图, 用样本估计总体, 加权平均数, 中位数, 众数等,熟练掌握各个概念是解题的关键.
15、
【解析】
求出△DAO≌△EBO,推出OD=OE,AD=BE,求出AD=BE=,由勾股定理得出DE2=DO2+OE2=AD2+AE2,求出即可.
【详解】
连结DE,如图,
∵∠ABC=90°,O为AC的中点,
∴∠CAB=∠ACB=45°,∠ABO=45°,AO=BO=CO,∠AOB=90°,
∵OE⊥OD,
∴∠DOE=∠AOB=90°,
∴∠DOA=∠BOE=90°-∠AOE,
∵AD∥BC,
∴∠DAB=180°-∠ABC=90°,
∴∠DAO=90°-45°=45°,
∴∠DAO=∠OBE,
在△DAO和△EBO中
∴△DAO≌△EBO(ASA),
∴OD=OE,AD=BE,
∵AB=1,AE=,
∴AD=BE=1-=,
在Rt△DAE和Rt△DOE中,由勾股定理得:DE2=DO2+OE2=AD2+AE2,
∴2DO2=()2+()2,
DO=,
故答案为:.
本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,解此题的关键是求出OD=OE,AD=BE,题目比较好,难度适中.
16、详见解析
【解析】
由AC=CD,∠ACB=∠DCE=90°,根据HL证出Rt△ACB≌Rt△DCE,推出∠A=∠D即可.
【详解】
∵点C为AD的中点,
∴AC=CD,
∵BE⊥AD,
∴∠ACB=∠DCE=90°,
在Rt△ACB和Rt△DCE中,,
∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥ED.
考点:全等三角形的判定与性质
17、
【解析】
根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC的长.
【详解】
解:由折叠可得,△EOC≌△EBC,
∴CB=CO,
∵四边形ABED是菱形,
∴AO=CO.
∵四边形ABCD是矩形,
∴∠B=90°,
设BC=x,则AC=2x,
∵在Rt△ABC中,AC2=BC2+AB2,
∴(2x)2=x2+32,
解得x=,即BC=.
根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.
18、(1);(2);(3)见解析
【解析】
(1)当时,由于轴,所以点的横坐标也为-6,将点的横坐标代入反比例函数解析式即可求得点的坐标,利用两点间的距离公式即可求得的长;
(2)根据轴.可以得到点和点的纵坐标相同,由此根据反比例函数解析式即可求得点的坐标,所以的长度可以求出,再结合,求出点的坐标;
(3)分别延长交轴于点,延长交轴于点,根据轴,轴,可以证得四边形为矩形,所以,而根据反比例函数的性质可得,所以,利用面积关系即可得到,从而得到证明;
【详解】
解:(1)∵轴,
∴点、的横坐标相等.
∴点的坐标.
∴.
(2)∵轴,
∴点、的纵坐标相等,
∴点的坐标.
∴.
∴点.
(3)延长交轴于点,延长交轴于点,连接.
∴轴,轴,
∴四边形为平行四边形.
又∵,
∴平行四边形为矩形.
∴.
又,
∵.
又∵,,
∴.
∴.
本题主要考查反比例函数的面积关系,熟练掌握反比例函数中的几何意义是解决本题的关键,难度中等,需要仔细分析图形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6
【解析】
如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;
【详解】
解:如图,连接.
∵四边形是平行四边形,
∴,,
∵,
∴,
∴,
∵,
∴,
故答案为6
本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
20、10%.
【解析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
【详解】
设平均每次降价的百分率为,根据题意列方程得,
,
解得,(不符合题意,舍去),
答:这个百分率是.
故答案为.
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.
21、x≥5
【解析】
根据二次根式的性质,即可求解.
【详解】
因为式子有意义,
可得:x-5≥1,
解得:x≥5,
故选A.
主要考查了二次根式的意义.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于1.
22、
【解析】
根据根的判别式求解即可.
【详解】
∵一元二次方程有实数根
∴
解得
故答案为:.
本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.
23、A
【解析】
【分析】结合统计表数据,根据众数和中位数的定义可以求出结果.
【详解】从统计表中看出,6出现次数最多,故众数是6;第10和11户用电量的平均数是中位数.即:
故选:A
【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)
【解析】
(1)根据平行四边形的性质证得AB=BE=AF,得到四边形ABEF是平行四边形,再根据邻边相等证得结论;
(2)根据菱形的性质求得∠BAE=30°,OB=OF=1,再根据FG⊥BF求出∠G==30°,得到BG=4,根据勾股定理求出FG.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠DAE=∠AEB.
∵AE平分∠BAD,
∴∠DAE=∠BAE.
∴∠AEB =∠BAE.
∴AB=BE.
同理:AB=AF.
∴AF=BE,AF∥BE,
∴四边形ABEF是平行四边形.
又∵AB=BE,
∴四边形ABEF是菱形.
(2) ∵四边形ABEF是菱形,
∴AE⊥BF,OA=OE,OB=OF,AE平分∠BAD,
∵AB= 2,∠BAD=60°,
∴∠BAE=30°,∠FBE=∠ABF=60°,
∴OB=OF=1,
∴BF=2,
又∵FG⊥BF,
∴∠BFG==90°,
∴∠G==30°,
∴BG=4,
∴.
此题考查平行四边形的性质,菱形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质 .
25、证明见解析
【解析】
由题意即可推出DN∥BM,通过求证△ADN≌△CBM即可推出DN=BM,便知四边形BMDN是平行四边形.
【详解】
证明:∵BM⊥AC,DN⊥AC,
∴∠DNA=∠BMC=90°,
∴DN∥BM,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAN=∠BCM,
∴△ADN≌△CBM,
∴DN=BM,
∴四边形BMDN是平行四边形.
本题主要考查平行四边形的判定与性质、全等三角形的判定与性质,熟悉相关性质是解题的关键.
26、猜想:BE∥DF,BE=DF;证明见解析.
【解析】试题分析:利用平行四边形的性质和平行线的性质可以得到相等的线段和相等的角,从而可以证明△BCE≌△DAF,进而证得结论.
试题解析:猜想:BE∥DF且BE=DF.
证明:∵四边形ABCD是平行四边形,
∴CB=AD,CB∥AD,
∴∠BCE=∠DAF,
在△BCE和△DAF
,
∴△BCE≌△DAF,
∴BE=DF,∠BEC=∠DFA,
∴BE∥DF,
即BE∥DF且BE=DF.
考点:1.平行四边形的性质;2.全等三角形的判定与性质.
题号
一
二
三
四
五
总分
得分
捐款(元)
20
50
100
150
200
人数(人)
4
12
9
3
2
相关试卷
这是一份山东省安丘市红沙沟镇红沙沟中学2025届九上数学开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省安丘市东埠中学2025届九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省潍坊市昌乐县九上数学开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。