搜索
    上传资料 赚现金
    英语朗读宝

    山东省枣庄市市中学区五校联考2024-2025学年九上数学开学达标检测模拟试题【含答案】

    山东省枣庄市市中学区五校联考2024-2025学年九上数学开学达标检测模拟试题【含答案】第1页
    山东省枣庄市市中学区五校联考2024-2025学年九上数学开学达标检测模拟试题【含答案】第2页
    山东省枣庄市市中学区五校联考2024-2025学年九上数学开学达标检测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省枣庄市市中学区五校联考2024-2025学年九上数学开学达标检测模拟试题【含答案】

    展开

    这是一份山东省枣庄市市中学区五校联考2024-2025学年九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD=90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是( )
    A.(2,2)B.(1,)C.(,1)D.(2,2)
    2、(4分)若二次根式有意义,则a的取值范围是( )
    A.a≥2 B.a≤2 C.a>2 D.a≠2
    3、(4分)若是关于,的二元一次方程,则( )
    A.,B.,C.,D.,
    4、(4分)如图,AD、BE分别是的中线和角平分线,,,F为CE的中点,连接DF,则AF的长等于( )
    A.2B.3C.D.
    5、(4分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是( )
    A.经过第一、三、四象限B.y随x的增大而增大
    C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)
    6、(4分)下列各点在函数y=3x+2的图象上的是( )
    A.(1,1)B.(﹣1,﹣1)C.(﹣1,1)D.(0,1)
    7、(4分)如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
    A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0
    8、(4分)下列分式是最简分式的是( ).
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是______.
    10、(4分)如图,在中,,点、、分别为、、的中点.若,则的长为_____________.
    11、(4分)长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_____.
    12、(4分)某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.
    13、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在ABCD中,点P是AB边上一点(不与A,B重合),过点P作PQ⊥CP,交AD边于点Q,且,连结.

    (1)求证:四边形是矩形;
    (2)若CP=CD,AP=2,AD=6时,求的长.
    15、(8分)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
    (1)观察图象,直接写出日销售量的最大值;
    (2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
    (3)试比较第10天与第12天的销售金额哪天多?
    16、(8分)荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.
    (1)求第一批荔枝每件的进价;
    (2)若第二批荔枝以30元/件的价格销售,在售出所购件数的后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?
    17、(10分)在平面直角坐标系中,直线分别交轴,轴于点.
    (1)当,自变量的取值范围是 (直接写出结果);
    (2)点在直线上.
    ①直接写出的值为 ;
    ②过点作交轴于点,求直线的解析式.
    18、(10分)如图,已知△ABC.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题.
    (1)作∠ABC的平分线BD、交AC于点D;
    (2)作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE,DF;
    (3)写出你所作出的图形中的相等线段.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)点在函数的图象上,则__________
    20、(4分)如图,将△ABC向右平移到△DEF位置,如果AE=8cm,BD=2cm,则△ABC移动的距离是___.
    21、(4分)在平行四边形ABCD中,若∠A+∠C=140°,则∠B= .
    22、(4分)如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km,则两点间的距离为______km.
    23、(4分)把点向上平移个单位长度,再向右平移个单位长度后得到点,则点的坐标是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.
    (1)求正比例函数与一次函数的解析式;
    (2)若一次函数交与y轴于点C,求△ACO的面积.
    25、(10分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.
    特例感知:
    (1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;
    ①当△ABC是一个等边三角形时,AF与BC的数量关系是: ;
    ②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是 ;
    猜想论证:
    (2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.
    拓展应用:
    (3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.
    26、(12分)如图,在平面直角坐标系中,直线,与反比例函数在第一象限内的图象相交于点
    (1)求该反比例函数的表达式;
    (2)将直线沿轴向上平移个单位后与反比例函数在第一象限内的图象相交于点,与轴交于点,若,连接,.
    ①求的值;
    ②判断与的位置关系,并说明理由;
    (3)在(2)的条件下,在射线上有一点(不与重合),使,求点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    过点C作CE垂直x轴于点E.先证明△ODB为等边三角形,求出OD、DB长,然后根据∠DCB=30°,求出CD的长,进而求出OC,最后求出OE,CE,即求出点C坐标.
    【详解】
    .解:如图,过点C作CE垂直x轴于点E.
    ∵A(2,﹣2),
    ∴OB=2,AB=2,
    ∵∠ABO=∠CBD=90°,
    ∴∠DBO=∠CBA=60°,
    ∵BO=BD,
    ∴∠D=DOB=60°,
    DO=DB=BO=2,
    ∴∠BCD=30°,
    CD=2BD=4,
    ∴CO=CD﹣OD=4﹣2=2,
    ∵∠COE=90°﹣∠COy=90°﹣60°=30°
    ∴CE=OC=1,OE=,
    ∴C(,1).
    故选C.
    本题考查坐标与图形性质,熟练运用30度角直角三角形性质是解题的关键.
    2、A
    【解析】
    试题分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,即a-2≥0,则a≥2.
    考点:二次根式的性质
    3、D
    【解析】
    根据二元一次方程的定义可知,m、n应满足以下4个关系式:,解之即得.
    【详解】
    解:由题意是关于,的二元一次方程,于是m、n应满足 ,解得,,故选D.
    本题考查了二元一次方程的定义,认真审题并列出m、n应满足的4个关系式是解决此题的关键.
    4、D
    【解析】
    已知AD是的中线,F为CE的中点,可得DF为△CBE的中位线,根据三角形的中位线定理可得DF∥BE,DF=BE=2;又因,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt△ADF中,根据勾股定理即可求得AF的长.
    【详解】
    ∵AD是的中线,F为CE的中点,
    ∴DF为△CBE的中位线,
    ∴DF∥BE,DF=BE=2;
    ∵,
    ∴∠BOD=90°,
    ∵DF∥BE,
    ∴∠ADF=∠BOD=90°,
    在Rt△ADF中,AD=4,DF=2,
    ∴AF=.
    故选D.
    本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=BE=2是解决问题的关键.
    5、C
    【解析】
    根据直线的图像性质即可解答.
    【详解】
    解:令x=0,则y=-2,故直线与y轴的交点坐标为:﹙0,-2﹚;
    令y=0,则x=,故直线与y轴的交点坐标为:(,0).
    ∵直线y=3x-2中k=3>0,b=-2<0,
    ∴此函数的图象经过一、三、四象限.
    k=3>0,y随x的增大而增大.
    故A,B,D正确,答案选C.
    本题考查的是x、y轴上点的坐标特点及一次函数图象的性质,即一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数图象经过一、三、四象限.
    6、B
    【解析】
    A、把(1,1)代入y=3x+2得:左边=1,右边=3×1+2=5,左边≠右边,故本选项错误;
    B、把(-1,-1)代入y=3x+2得:左边=-1,右边=3×(-1)+2=-1,左边=右边,故本选项正确;
    C、把(-1,1)代入y=3x+2得:左边=1,右边=3×(-1)+2=-1,左边≠右边,故本选项错误;
    D、把(0,1)代入y=3x+2得:左边=1,右边=3×0+2=2,左边≠右边,故本选项错误.
    故选B.
    点睛:本题考查了一次函数图象上点的坐标特征,点的坐标满足函数关系式的点一定在函数图象上.
    7、B
    【解析】
    试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.
    解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,
    显然,这些点在点A与点B之间.
    故选B.
    8、C
    【解析】
    A选项中,因为,所以本选项错误;
    B选项中,因为,所以本选项错误;
    C选项中,因为的分子与分母没有1之外的公因式,所以本选项正确;
    D选项中,因为,所以本选项错误;
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.
    【详解】
    解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,
    ∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,
    即D为CE中点,
    ∵EF⊥BC,∴∠EFC=90°,
    ∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,
    ∵EF=3,∴CE=2,∴AB=,
    故答案为.
    本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.
    10、1
    【解析】
    已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.
    【详解】
    解:∵△ABC是直角三角形,CD是斜边的中线,
    ∴AB=2CD
    又∵EF是△ABC的中位线,
    ∴AB=2CD=2×1=10cm,
    故答案为:1.
    此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.
    11、1.
    【解析】
    由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案
    【详解】
    ∵长、宽分别为a、b的矩形,它的周长为14,面积为10,
    ∴a+b==7,ab=10,
    ∴a2b+ab2=ab(a+b)=10×7=1,
    故答案为:1.
    本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.
    12、
    【解析】
    试题解析:0.00 000 002=2×10-8.
    点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    13、.
    【解析】
    根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,
    ∵坐到1,2,3号的坐法共有 6 种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有 2 种方法(CBD、DBC)B坐在2号座位,
    ∴B坐在2号座位的概率是.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)
    【解析】
    (1)证出∠A=90°即可;
    (2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6-x,由勾股定理得出方程,解方程即可.
    【详解】
    (1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,
    又∠BPC=∠AQP,
    ∴∠CPQ=∠A,
    ∵PQ⊥CP,
    ∴∠A=∠CPQ=90°,
    ∴平行四边形ABCD是矩形;
    (2)解:∵四边形ABCD是矩形
    ∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中, ,
    ∴Rt△CDQ≌Rt△CPQ(HL)),
    ∴DQ=PQ,
    设AQ=x,则DQ=PQ=6-x
    在Rt△APQ中,AQ2+AP2=PQ2
    ∴x2+22=(6-x)2,
    解得:x=
    ∴AQ的长是.
    此题考查平行四边形的性质、矩形的判定与性质,三角形全等的判定和性质,勾股定理的应用,熟练掌握平行四边形的性质,证明四边形是矩形是解题的关键.
    15、解:(1)日销售量的最大值为120千克.
    (2)
    (3)第10天的销售金额多.
    【解析】
    试题分析:(1)观察图象,即可求得日销售量的最大值;
    (2)分别从0≤x≤12时与12<x≤20去分析,利用待定系数法即可求得小明家樱桃的日销售量y与上市时间x的函数解析式;
    (3)第10天和第12天在第5天和第15天之间,当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=kx+b,由点(5,32),(15,12)在z=kx+b的图象上,利用待定系数法即可求得樱桃价格与上市时间的函数解析式,继而求得10天与第12天的销售金额.
    试题解析:(1)由图象得:120千克,
    (2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=k1x,
    ∵直线y=k1x过点(12,120),
    ∴k1=10,
    ∴函数解析式为y=10x,
    当12<x≤20,设日销售量与上市时间的函数解析式为y=k2x+b,
    ∵点(12,120),(20,0)在y=k2x+b的图象上,
    ∴,
    解得:
    ∴函数解析式为y=-15x+300,
    ∴小明家樱桃的日销售量y与上市时间x的函数解析式为:;
    (3)∵第10天和第12天在第5天和第15天之间,
    ∴当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=mx+n,
    ∵点(5,32),(15,12)在z=mx+n的图象上,
    ∴,
    解得:,
    ∴函数解析式为z=-2x+42,
    当x=10时,y=10×10=100,z=-2×10+42=22,
    销售金额为:100×22=2200(元),
    当x=12时,y=120,z=-2×12+42=18,
    销售金额为:120×18=2160(元),
    ∵2200>2160,
    ∴第10天的销售金额多.
    考点:一次函数的应用.
    16、 (1)第一批荔枝每件进价为25元;(2)剩余的荔枝每件售价至少25元.
    【解析】
    (1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x-5)元,根据数量=总价÷单价结合第二批购进荔枝的件数是第一批购进件数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)根据数量=总价÷单价可求出第二次购进荔枝的件数,设剩余的荔枝每件售价为y元,根据总利润=单件利润×销售数量结合第二批荔枝的销售利润不少于300元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    解:(1)设第一批荔枝每件进价为元,则第二批荔枝每件进价为元,则有
    ,
    解得:,
    经检验是原方程的根。
    所以,第一批荔枝每件进价为25元。
    (2)设剩余的荔枝每件售价元,
    第二批荔枝每件进价为20元,共40件,
    ,
    解得:
    所以,剩余的荔枝每件售价至少25元.
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    17、(1);(2)①1;②
    【解析】
    (1)先利用直线y=3x+3确定A、B的解析式,然后利用一次函数的性质求解;
    (2))①把C(-,n)代入y=3x+3可求出n的值;
    ②利用两直线垂直,一次项系数互为负倒数可设直线CD的解析式为y=-x+b,然后把C(-,1)代入求出b即可.
    【详解】
    解:(1)当y=0时,3x+3=0,解得x=-1,则A(-1,0),
    当x=0时,y=3x+3=3,则B(0,3),
    当0<y≤3,自变量x的取值范围是-1≤x<0;
    (2)①把C(-,n)代入y=3x+3得3×(-)+3=n,解得n=1;
    ②∵AB⊥CD,
    ∴设直线CD的解析式为y=-x+b,
    把C(-,1)代入得-×(-)+b=1,解得b=,
    ∴直线CD的解析式为y=-x+.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
    18、(1)射线BD即为所求.见解析;(2)直线BD即为所求.见解析;(3)EB=ED=FD=FB,BO=DO,EO=FO.
    【解析】
    (1)根据尺规作角平分线即可完成
    (2)根据线段垂直平分线的性质即可
    (3)根据线段垂直平分线的性质和全等三角形的知识即可找到相等的线段
    【详解】
    (1)射线BD即为所求.
    (2)直线BD即为所求.
    (3)记EF与BD的交点为O.
    因为EF为BD的垂直平分线,
    所以EB=ED,FB=FD,BO=DO,∠EOB=∠FOB=90°.
    因为BD为∠ABC的角平分线,
    所以∠ABD=∠CBD.
    因为∠ABD=∠CBD,BO=BO,∠EOB=∠FOB=90°,
    所以△EOB≌△FOB(ASA).
    所以EO=FO,BE=BF.
    因为EB=ED,FB=FD,BE=BF,
    所以EB=ED=FD=FB.
    因此,图中相等的线段有:EB=ED=FD=FB,BO=DO,EO=FO.
    此题考查尺规作图,段垂直平分线的性质和全等三角形,解题关键在于掌握作图法则
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    把点A(m,m+5)代入得到关于m的一元一次方程,解之即可.
    【详解】
    解:把点A(m,m+5)代入得:
    m+5=-2m+1
    解得:m=.
    本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.
    20、3cm.
    【解析】
    根据平移的性质,对应点间的距离等于平移距离求出AD、BE,然后求解即可.
    【详解】
    ∵将△ABC向右平移到△DEF位置,
    ∴BE=AD,
    又∵AE=8cm,BD=2cm,
    ∴AD=cm.
    ∴△ABC移动的距离是3cm,
    故答案为:3cm.
    本题考查了平移的性质,熟记对应点间的距离等于平移距离是解题的关键.
    21、110°
    【解析】
    试题解析:∵平行四边形ABCD,
    ∴∠A+∠B=180°,∠A=∠C,
    ∵∠A+∠C=140°,
    ∴∠A=∠C=70°,
    ∴∠B=110°.
    考点:平行四边形的性质.
    22、1.1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km.
    【详解】
    ∵在Rt△ABC中,∠ACB=90°,M为AB的中点,
    ∴MC=AB=AM=1.1(km).
    故答案为:1.1.
    此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.
    23、
    【解析】
    根据向上平移纵坐标加,向右平移横坐标加解答即可.
    【详解】
    解:点(-2,1)向上平移2个单位长度,纵坐标变为1+2=3,
    向右平移3个单位长度横坐标变为-2+3=1,
    所以,点B的坐标为(1,3).
    故答案为:(1,3).
    本题本题考查了坐标系中点的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=﹣2x+1;(2)2.
    【解析】
    (1)先设正比例函数解析式为y=mx,再把(1,4)点代入可得m的值,进而得到解析式;设一次函数解析式为y=kx+b,把(1,4)(2,0)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式;
    (2)利用一次函数解析式,求得OC的长,进而得出△ACO的面积.
    【详解】
    解:(1)设正比例函数解析式为y=mx,
    ∵图象经过点A(1,4),
    ∴4=m×1,即m=4,
    ∴正比例函数解析式为y=4x;
    设一次函数解析式为y=kx+b,
    ∵图象经过(1,4)(2,0),
    ∴,
    解得:,
    ∴一次函数解析式为y=﹣2x+1.
    (2)在y=﹣2x+1中,令x=0,则y=1,
    ∴C(0,1),
    ∴OC=1,
    ∴S△AOC=×1×1=2.
    此题主要考查了待定系数法求一次函数解析式以及三角形的面积,关键是用联立解析式的方法求出交点坐标.
    25、(1)AF=BC;a;(2)猜想:AF=BC,(3)
    【解析】
    (1)①先判断出AD=AE=AB=AC,∠DAE=120°,进而判断出∠ADE=30°,再利用含30度角的直角三角形的性质即可得出结论;
    ②先判断出△ABC≌△ADE,利用直角三角形的性质即可得出结论;
    (2)先判断出△AEG≌△ACB,得出EG=BC,再判断出DF=EF,即可得出结论;
    (3)先判断出四边形PHCD是矩形,进而判断出∠DPC=30°,再判断出PB=PC,进而求出∠APB=150°,即可利用“夹补三角形”即可得出结论.
    【详解】
    解:(1)
    ∵△ABC与△ADE是一对“夹补三角形”,
    ∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
    ①∵△ABC是等边三角形,
    ∴AB=AC=BC,∠BAC=60°
    ∴AD=AE=AB=AC,∠DAE=120°,
    ∴∠ADE=30°,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF⊥DE,
    在Rt△ADF中,AF=AD=AB=BC,
    故答案为:AF=BC;
    ②当△ABC是直角三角形时,∠BAC=90°,
    ∵∠DAE=90°=∠BAC,
    易证,△ABC≌△ADE,
    ∴DE=BC,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF=DE=BC=a,
    故答案为a;
    (2)解:猜想:AF=BC,
    理由:如图1,延长DA到G,使AG=AD,连EG
    ∵△ABC与△ADE是一对“夹补三角形”,
    ∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
    ∴AG=AB,∠EAG=∠BAC,AE=AC,
    ∴△AEG≌△ACB,
    ∴EG=BC,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF=EG,
    ∴AF=BC;
    (3)证明:如图4,
    ∵△PAD是等边三角形,
    ∴DP=AD=3,∠ADP=∠APD=60°,
    ∵∠ADC=150°,
    ∴∠PDC=90°,
    作PH⊥BC于H,
    ∵∠BCD=90°
    ∴四边形PHCD是矩形,
    ∴CH=PD=3,
    ∴BH=6﹣3=3=CH,
    ∴PC=PB,
    在Rt△PCD中,tan∠DPC=,
    ∴∠DPC=30°
    ∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,
    ∴∠APB+∠CPD=180°,
    ∵DP=AP,PC=PB,
    ∴△PCD是△PBA的“夹补三角形”,
    由(2)知,CD=,
    ∴△PAB的“夹补中线”=.
    此题是四边形综合题,主要考查了全等三角形的判定和性质,含30度角的直角三角形的性质,锐角三角函数,新定义的理解和掌握,理解新定义是解本题的关键.
    26、 (1);(2)①;②;(3).
    【解析】
    (1)先确定出点A坐标,再用待定系数法求出反比例函数解析式;
    (2)①先求出点B坐标即可得出结论;②利用勾股定理的逆定理即可判断;
    (3)利用相似三角形的性质得出AP,进而求出OP,再求出∠AOH=30°,最后用含30°的直角三角形的性质即可得出结论.
    【详解】
    解:(1)∵点在直线,
    ∴,
    ∴,
    ∴点,
    ∵点在反比例函数上,
    ∴,
    ∴;
    (2)①作轴于,轴于.
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴设的解析式为,
    ∵经过点,
    ∴.
    ∴直线的解析式为,
    ∴.
    ②∵,,
    ∴,,,
    ∴,
    ∴,
    ∴.
    (3)如图
    ∵,,
    由(2)知,,
    即,
    ∴,
    ∵,
    ∴,
    过点作轴于
    ∵,
    ∴,,
    在中,
    ∴,

    过点作轴于,
    在中,,,
    ∴,,
    ∴.
    此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数的意义,相似三角形的性质,含30°角的直角三角形的性质,解(1)的关键是求出点A的坐标,解(2)的关键是求出点B的坐标,解(3)的关键是求出OP,是一道中等难度的中考常考题.
    题号





    总分
    得分
    批阅人

    相关试卷

    山东省济南市市中学区五校联考2025届数学九上开学复习检测试题【含答案】:

    这是一份山东省济南市市中学区五校联考2025届数学九上开学复习检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省冠县联考2024-2025学年九上数学开学达标检测模拟试题【含答案】:

    这是一份山东省冠县联考2024-2025学年九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省淄博周村区五校联考九上数学开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年山东省淄博周村区五校联考九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map